首页> 外文期刊>IEEE transactions on visualization and computer graphics >Noise-Based Volume Rendering for the Visualization of Multivariate Volumetric Data
【24h】

Noise-Based Volume Rendering for the Visualization of Multivariate Volumetric Data

机译:基于噪声的体绘制,用于多维体数据的可视化

获取原文
获取原文并翻译 | 示例

摘要

Analysis of multivariate data is of great importance in many scientific disciplines. However, visualization of 3D spatially-fixed multivariate volumetric data is a very challenging task. In this paper we present a method that allows simultaneous real-time visualization of multivariate data. We redistribute the opacity within a voxel to improve the readability of the color defined by a regular transfer function, and to maintain the see-through capabilities of volume rendering. We use predictable procedural noise - random-phase Gabor noise - to generate a high-frequency redistribution pattern and construct an opacity mapping function, which allows to partition the available space among the displayed data attributes. This mapping function is appropriately filtered to avoid aliasing, while maintaining transparent regions. We show the usefulness of our approach on various data sets and with different example applications. Furthermore, we evaluate our method by comparing it to other visualization techniques in a controlled user study. Overall, the results of our study indicate that users are much more accurate in determining exact data values with our novel 3D volume visualization method. Significantly lower error rates for reading data values and high subjective ranking of our method imply that it has a high chance of being adopted for the purpose of visualization of multivariate 3D data.
机译:在许多科学学科中,对多元数据进行分析非常重要。但是,对3D空间固定的多元体积数据进行可视化是一项非常具有挑战性的任务。在本文中,我们提出了一种允许同时实时显示多变量数据的方法。我们重新分配体素内的不透明度,以提高由常规传递函数定义的颜色的可读性,并保持体绘制的透明功能。我们使用可预测的过程噪声-随机相位Gabor噪声-生成高频重新分布模式并构造不透明度映射函数,该函数允许在显示的数据属性之间分配可用空间。对该映射函数进行了适当过滤,以避免混叠,同时保持透明区域。我们展示了我们的方法在各种数据集和不同示例应用程序中的有用性。此外,我们通过与受控用户研究中的其他可视化技术进行比较来评估我们的方法。总体而言,我们的研究结果表明,使用我们新颖的3D体积可视化方法,用户可以更准确地确定确切的数据值。读取数据值的错误率显着降低,并且我们的方法的主观评分高,这意味着它有很大的机会被用于多变量3D数据的可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号