首页> 外文期刊>IEEE transactions on visualization and computer graphics >Scheduling in Heterogeneous Computing Environments for Proximity Queries
【24h】

Scheduling in Heterogeneous Computing Environments for Proximity Queries

机译:异构计算环境中的邻近查询调度

获取原文
获取原文并翻译 | 示例

摘要

We present a novel, linear programming (LP)-based scheduling algorithm that exploits heterogeneous multicore architectures such as CPUs and GPUs to accelerate a wide variety of proximity queries. To represent complicated performance relationships between heterogeneous architectures and different computations of proximity queries, we propose a simple, yet accurate model that measures the expected running time of these computations. Based on this model, we formulate an optimization problem that minimizes the largest time spent on computing resources, and propose a novel, iterative LP-based scheduling algorithm. Since our method is general, we are able to apply our method into various proximity queries used in five different applications that have different characteristics. Our method achieves an order of magnitude performance improvement by using four different GPUs and two hexa-core CPUs over using a hexa-core CPU only. Unlike prior scheduling methods, our method continually improves the performance, as we add more computing resources. Also, our method achieves much higher performance improvement compared with prior methods as heterogeneity of computing resources is increased. Moreover, for one of tested applications, our method achieves even higher performance than a prior parallel method optimized manually for the application. We also show that our method provides results that are close (e.g., 75 percent) to the performance provided by a conservative upper bound of the ideal throughput. These results demonstrate the efficiency and robustness of our algorithm that have not been achieved by prior methods. In addition, we integrate one of our contributions with a work stealing method. Our version of the work stealing method achieves 18 percent performance improvement on average over the original work stealing method. This result shows wide applicability of our approach.
机译:我们提出了一种新颖的,基于线性编程(LP)的调度算法,该算法利用异构多核体系结构(例如CPU和GPU)来加速各种接近度查询。为了表示异构体系结构与邻近查询的不同计算之间的复杂性能关系,我们提出了一个简单而准确的模型,该模型可测量这些计算的预期运行时间。基于此模型,我们提出了一个优化问题,该问题可以最大程度地减少在计算资源上花费的最大时间,并提出一种新颖的,基于LP的迭代调度算法。由于我们的方法是通用的,因此我们能够将我们的方法应用于五个具有不同特征的不同应用程序中使用的各种邻近查询。与仅使用六核CPU相比,我们的方法通过使用四个不同的GPU和两个六核CPU实现了数量级的性能改进。与以前的调度方法不同,随着我们添加更多的计算资源,我们的方法不断提高性能。而且,与现有方法相比,随着计算资源异质性的提高,我们的方法实现了更高的性能改进。此外,对于一种经过测试的应用程序,我们的方法比针对该应用程序手动优化的现有并行方法具有更高的性能。我们还表明,我们的方法所提供的结果接近于理想吞吐量的保守上限所提供的性能(例如75%)。这些结果证明了我们的算法的效率和鲁棒性是现有方法无法实现的。此外,我们将自己的贡献之一与偷工法相结合。我们的工作窃取方法版本比原始工作窃取方法平均可提高18%的性能。这一结果表明我们的方法具有广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号