首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data
【24h】

DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data

机译:DecisionFlow:高维时间事件序列数据的可视化分析

获取原文
获取原文并翻译 | 示例

摘要

Temporal event sequence data is increasingly commonplace, with applications ranging from electronic medical records to financial transactions to social media activity. Previously developed techniques have focused on low-dimensional datasets (e.g., with less than 20 distinct event types). Real-world datasets are often far more complex. This paper describes DecisionFlow, a visual analysis technique designed to support the analysis of high-dimensional temporal event sequence data (e.g., thousands of event types). DecisionFlow combines a scalable and dynamic temporal event data structure with interactive multi-view visualizations and ad hoc statistical analytics. We provide a detailed review of our methods, and present the results from a 12-person user study. The study results demonstrate that DecisionFlow enables the quick and accurate completion of a range of sequence analysis tasks for datasets containing thousands of event types and millions of individual events.
机译:时间事件序列数据越来越普遍,其应用范围从电子病历到金融交易再到社交媒体活动。先前开发的技术集中于低维数据集(例如,具有少于20种不同的事件类型)。现实世界的数据集通常要复杂得多。本文介绍了DecisionFlow,这是一种视觉分析技术,旨在支持对高维时间事件序列数据(例如数千个事件类型)进行分析。 DecisionFlow将可扩展的动态时间事件数据结构与交互式多视图可视化和即席统计分析相结合。我们将对我们的方法进行详细的回顾,并介绍12位用户的研究结果。研究结果表明,DecisionFlow可为包含数千个事件类型和数百万个单个事件的数据集快速准确地完成一系列序列分析任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号