首页> 外文期刊>IEEE transactions on visualization and computer graphics >Adaptive Disentanglement Based on Local Clustering in Small-World Network Visualization
【24h】

Adaptive Disentanglement Based on Local Clustering in Small-World Network Visualization

机译:小世界网络可视化中基于局部聚类的自适应纠缠

获取原文
获取原文并翻译 | 示例

摘要

Small-world networks have characteristically low pairwise shortest-path distances, causing distance-based layout methods to generate hairball drawings. Recent approaches thus aim at finding a sparser representation of the graph to amplify variations in pairwise distances. Since the effect of sparsification on the layout is difficult to describe analytically, the incorporated filtering parameters of these approaches typically have to be selected manually and individually for each input instance. We here propose the use of graph invariants to determine suitable parameters automatically. This allows us to perform adaptive filtering to obtain drawings in which the cluster structure is most prominent. The approach is based on an empirical relationship between input and output characteristics that is derived from real and synthetic networks. Experimental evaluation shows the effectiveness of our approach and suggests that it can be used by default to increase the robustness of force-directed layout methods.
机译:小世界网络通常具有成对的最短最短路径距离,从而导致基于距离的布局方法生成毛线球图。因此,最近的方法旨在寻找图形的稀疏表示以放大成对距离的变化。由于稀疏性对布局的影响很难用解析的方式描述,因此通常必须针对每个输入实例手动且单独地选择这些方法的合并过滤参数。我们在这里提出使用图不变式来自动确定合适的参数。这使我们能够执行自适应滤波以获得簇结构最突出的图形。该方法基于输入和输出特性之间的经验关系,该关系是从真实和合成网络得出的。实验评估显示了我们方法的有效性,并建议可以默认使用它来提高力导向布局方法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号