首页> 外文期刊>IEEE transactions on visualization and computer graphics >Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement
【24h】

Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

机译:误差最小且保留特征的网格划分,角度最小化

获取原文
获取原文并翻译 | 示例

摘要

Surface remeshing is a key component in many geometry processing applications. The typical goal consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application (e.g., the minimum interior angle is above an application-dependent threshold). Our algorithm is designed to address all three optimization goals simultaneously by targeting prescribed bounds on approximation error $delta$ , minimal interior angle $theta$ and maximum mesh complexity $N$ (number of vertices). The approximation error bound $delta$ is a hard constraint, while the other two criteria are modeled as optimization goals to guarantee feasibility. Our optimization framework applies carefully prioritized local operators in order to greedily search for the coarsest mesh with minimal interior angle above $theta$ and approximation error bounded by $delta$ . Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that for reasonable angle bounds ( $theta leq 35^circ$ ) our approach delivers high-quality meshes with implicitly preserved features (no tagging required) and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.
机译:在许多几何处理应用程序中,曲面重划是关键要素。典型的目标在于找到一个网格,该网格应(1)在几何上忠于原始几何形状,(2)尽可能粗糙,以获得低复杂度的表示形式,以及(3)不含会妨碍所需应用程序的不良元素(例如, ,最小内角高于与应用相关的阈值)。我们的算法旨在通过针对近似误差 $ delta $ ,最小内角 $ theta $ 和最大网格复杂度 $ N $ (顶点数)。近似误差范围 $ delta $ 是一个硬约束,而另两个准则则被建模为优化目标以保证可行性。我们的优化框架会仔细应用优先排序的局部算子,以贪婪地搜索内角在 $ theta $ < inline-graphic xlink:href =“ hu-ieq5-2632720.gif” /> 和由 $ delta界定的近似误差$ 。快速运行时间通过局部近似误差估计实现,而隐式特征保留通过专门设计的顶点重定位运算符获得。实验表明,对于合理的角度范围( $ theta leq 35 ^ circ $ )我们的方法提供了具有隐式保留的特征(无需标记)的高质量网格,并且比状态更好地平衡了几何保真度,网格复杂度和元素质量最先进的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号