首页> 外文期刊>IEEE transactions on visualization and computer graphics >Dense Visual SLAM with Probabilistic Surfel Map
【24h】

Dense Visual SLAM with Probabilistic Surfel Map

机译:带有概率Surfel映射的密集Visual SLAM

获取原文
获取原文并翻译 | 示例

摘要

Visual SLAM is one of the key technologies to align the virtual and real world together in Augmented Reality applications. RGBD dense Visual SLAM approaches have shown their advantages in robustness and accuracy in recent years. However, there are still several challenges such as the inconsistencies in RGBD measurements across multiple frames that could jeopardize the accuracy of both camera trajectory and scene reconstruction. In this paper, we propose a novel map representation called Probabilistic Surfel Map (PSM) for dense visual SLAM. The main idea is to maintain a globally consistent map with both photometric and geometric uncertainties encoded in order to address the inconsistency issue. The key of our PSM is proper modeling and updating of sensor measurement uncertainties, as well as the strategies to apply them for improving both the front-end pose estimation and the back-end optimization. Experimental results on publicly available datasets demonstrate major improvements with our approach over the state-of-the-art methods. Specifically, comparing with -DVO, we achieve a 40% reduction in absolute trajectory error and an 18% reduction in relative pose error in visual odometry, as well as an 8.5% reduction in absolute trajectory error in complete SLAM. Moreover, our PSM enables generation of a high quality dense point cloud with comparable accuracy as the state-of-the-art approach.
机译:Visual SLAM是在增强现实应用程序中将虚拟世界与现实世界整合在一起的关键技术之一。近年来,RGBD密集Visual SLAM方法已显示出其鲁棒性和准确性方面的优势。但是,仍然存在一些挑战,例如跨多个帧的RGBD测量不一致,这可能会损害相机轨迹和场景重建的准确性。在本文中,我们提出了一种用于密集视觉SLAM的新颖的地图表示形式,称为概率冲浪地图(PSM)。主要思想是维护一个全局一致的地图,同时对光度和几何不确定性进行编码,以解决不一致问题。我们PSM的关键是传感器测量不确定性的正确建模和更新,以及将其应用于改善前端姿态估计和后端优化的策略。可公开获得的数据集上的实验结果表明,我们的方法比现有方法具有重大改进。具体而言,与-DVO相比,我们在视觉里程计中的绝对轨迹误差减少了40%,相对姿态误差减少了18%,在完整SLAM中,绝对轨迹误差减少了8.5%。此外,我们的PSM能够生成具有与最新方法相当的准确性的高质量密集点云。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号