首页> 外文期刊>IEEE transactions on visualization and computer graphics >A Visual Analytics Approach for Categorical Joint Distribution Reconstruction from Marginal Projections
【24h】

A Visual Analytics Approach for Categorical Joint Distribution Reconstruction from Marginal Projections

机译:基于边际投影的分类联合分布重构的可视化分析方法

获取原文
获取原文并翻译 | 示例

摘要

Oftentimes multivariate data are not available as sets of equally multivariate tuples, but only as sets of projections into subspaces spanned by subsets of these attributes. For example, one may find data with five attributes stored in six tables of two attributes each, instead of a single table of five attributes. This prohibits the visualization of these data with standard high-dimensional methods, such as parallel coordinates or MDS, and there is hence the need to reconstruct the full multivariate (joint) distribution from these marginal ones. Most of the existing methods designed for this purpose use an iterative procedure to estimate the joint distribution. With insufficient marginal distributions and domain knowledge, they lead to results whose joint errors can be large. Moreover, enforcing smoothness for regularizations in the joint space is not applicable if the attributes are not numerical but categorical. We propose a visual analytics approach that integrates both anecdotal data and human experts to iteratively narrow down a large set of plausible solutions. The solution space is populated using a Monte Carlo procedure which uniformly samples the solution space. A level-of-detail high dimensional visualization system helps the user understand the patterns and the uncertainties. Constraints that narrow the solution space can then be added by the user interactively during the iterative exploration, and eventually a subset of solutions with narrow uncertainty intervals emerges.
机译:通常,多元数据不能作为相等多元元组的集合使用,而只能作为对这些属性子集所覆盖的子空间的投影集合使用。例如,人们可能会发现具有五个属性的数据存储在六个表中,每个表具有两个属性,而不是一个具有五个属性的表。这禁止使用标准的高维方法(例如,平行坐标或MDS)来可视化这些数据,因此需要从这些边缘数据重构完整的多变量(联合)分布。为此目的而设计的大多数现有方法都使用迭代过程来估计联合分布。由于边际分布和领域知识不足,它们会导致结果的联合误差可能很大。此外,如果属性不是数字而是分类的,则在关节空间中强制进行规则化的平滑度将不适用。我们提出了一种视觉分析方法,该方法将轶事数据和人类专家集成在一起,以迭代方式缩小了一系列可行的解决方案的范围。使用蒙特卡洛程序填充解决方案空间,该程序对解决方案空间进行均匀采样。细节级别的高维可视化系统可帮助用户了解模式和不确定性。然后,用户可以在迭代探索期间以交互方式添加使解决方案空间变窄的约束,最终会出现不确定性间隔很窄的解决方案子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号