首页> 外文期刊>IEEE transactions on visualization and computer graphics >Visual Interaction with Deep Learning Models through Collaborative Semantic Inference
【24h】

Visual Interaction with Deep Learning Models through Collaborative Semantic Inference

机译:通过协同语义推理与深度学习模型的视觉交互

获取原文
获取原文并翻译 | 示例

摘要

Automation of tasks can have critical consequences when humans lose agency over decision processes. Deep learning models are particularly susceptible since current black-box approaches lack explainable reasoning. We argue that both the visual interface and model structure of deep learning systems need to take into account interaction design. We propose a framework of collaborative semantic inference (CSI) for the co-design of interactions and models to enable visual collaboration between humans and algorithms. The approach exposes the intermediate reasoning process of models which allows semantic interactions with the visual metaphors of a problem, which means that a user can both understand and control parts of the model reasoning process. We demonstrate the feasibility of CSI with a co-designed case study of a document summarization system.
机译:当人们在决策过程中失去代理权时,任务自动化可能会产生严重后果。深度学习模型特别容易受到影响,因为当前的黑盒方法缺乏可解释的推理。我们认为深度学习系统的视觉界面和模型结构都需要考虑交互设计。我们为交互和模型的协同设计提出了一个协作语义推理(CSI)框架,以实现人与算法之间的可视化协作。该方法公开了模型的中间推理过程,该过程允许与问题的视觉隐喻进行语义交互,这意味着用户可以理解和控制模型推理过程的各个部分。我们通过共同设计的文档摘要系统案例研究论证了CSI的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号