...
首页> 外文期刊>IEEE Transactions on Vehicular Technology >Distributed Adaptive Sliding Mode Control Strategy for Vehicle-Following Systems With Nonlinear Acceleration Uncertainties
【24h】

Distributed Adaptive Sliding Mode Control Strategy for Vehicle-Following Systems With Nonlinear Acceleration Uncertainties

机译:具有非线性加速度不确定性的跟随系统的分布式自适应滑模控制策略

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the distributed adaptive control problems for nonlinear vehicle-following systems subject to nonlinear acceleration uncertainties involving vehicle acceleration disturbances, wind gusts, and parameter uncertainties. It is worth mentioning that the acceleration of the leader in most existing studies is always assumed to be zero or constant; the evolution of the leader in this paper may be subject to some unknown bounded input. Distributed adaptive control strategies based on an integral sliding mode control (ISMC) technique are proposed to maintain a rigid formation for a string of vehicle platoon in one dimension. First, distributed adaptive control based on traditional constant time headway (TCTH) policy under the assumption that the initial spacing and velocity errors are zero is developed to guarantee that all spacing errors are uniformly ultimately bounded and that the string stability of the whole vehicle platoon is also satisfied. Then, a modified constant time headway (MCTH) policy is proposed to remove the assumption of zero initial spacing and velocity errors and simultaneously effectively decrease the intervehicle spacing (i.e., increase the traffic density), making them nearly equal to those by using the constant spacing (CS) policy. Adaptive compensation terms without requiring a prior knowledge of upper bounds of the uncertainties are constructed to compensate for the time-variant effects caused by nonlinear acceleration uncertainties. Finally, numerical simulation results show the validity and advantages of the proposed policy up to a significant higher traffic density.
机译:本文研究具有非线性加速度不确定性的非线性跟随系统的分布式自适应控制问题,该不确定性涉及车辆加速度扰动,阵风和参数不确定性。值得一提的是,在大多数现有研究中,领导者的加速度始终被假定为零或恒定。本文中领导者的发展可能受到一些未知的有界输入的约束。提出了一种基于整体滑模控制(ISMC)技术的分布式自适应控制策略,以保持一排车辆排的一维刚性结构。首先,在假设初始间距和速度误差为零的前提下,开发了基于传统恒定时距(TCTH)策略的分布式自适应控制,以确保最终统一限制所有间距误差,并确保整个车辆排的弦稳定性为也满意。然后,提出了一种改进的恒定时间行驶(MCTH)策略,以消除零初始间距和速度误差的假设,并同时有效地减小车辆间距(即,增加交通密度),使其与使用常数几乎相等。间隔(CS)策略。无需事先知道不确定性上限的自适应补偿项就可以补偿非线性加速度不确定性引起的时变效应。最后,数值模拟结果显示了所提出的策略在明显更高的流量密度下的有效性和优势。

著录项

  • 来源
    《IEEE Transactions on Vehicular Technology》 |2017年第2期|981-991|共11页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号