首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Blind Source Separation for Clutter and Noise Suppression in Ultrasound Imaging: Review for Different Applications
【24h】

Blind Source Separation for Clutter and Noise Suppression in Ultrasound Imaging: Review for Different Applications

机译:超声成像中杂波和噪声抑制的盲源分离:对不同应用的回顾

获取原文
获取原文并翻译 | 示例

摘要

Blind source separation (BSS) refers to a number of signal processing techniques that decompose a signal into several "source" signals. In recent years, BSS is increasingly employed for the suppression of clutter and noise in ultrasonic imaging. In particular, its ability to separate sources based on measures of independence rather than their temporal or spatial frequency content makes BSS a powerful filtering tool for data in which the desired and undesired signals overlap in the spectral domain. The purpose of this work was to review the existing BSS methods and their potential in ultrasound imaging. Furthermore, we tested and compared the effectiveness of these techniques in the field of contrast-ultrasound super-resolution, contrast quantification, and speckle tracking. For all applications, this was done in silico, in vitro, and in vivo. We found that the critical step in BSS filtering is the identification of components containing the desired signal and highlighted the value of a priori domain knowledge to define effective criteria for signal component selection.
机译:盲源分离(BSS)是指将信号分解为几个“源”信号的信号处理技术。近年来,BSS越来越多地用于抑制超声成像中的杂波和噪声。特别地,它能够基于独立措施而不是其时间或空间频率内容分离源的能力使得BSS成为一种强大的过滤工​​具,用于其中所需和不期望的信号在光谱域中重叠的数据。这项工作的目的是审查现有的BSS方法及其在超声成像中的潜力。此外,我们测试并比较了对比超声超分辨率,对比度和散斑跟踪领域的这些技术的有效性。对于所有应用,这是在Silico,体外和体内进行的。我们发现BSS滤波中的关键步骤是识别包含所需信号的组件,并突出显示先验域知识的值以定义信号分量选择的有效标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号