...
首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >Silicon-Based Megahertz Ultrasonic Nozzles for Production of Monodisperse Micrometer-Sized Droplets
【24h】

Silicon-Based Megahertz Ultrasonic Nozzles for Production of Monodisperse Micrometer-Sized Droplets

机译:硅基兆赫超声波喷嘴,用于生产单分散微米级液滴

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Monodisperse ethanol droplets 2.4 ;C;m and water droplets 4.5 ;C;m in diameter have been produced in ultrasonic atomization using 1.5- and 1.0-MHz microelectromechanical system (MEMS)-based silicon nozzles, respectively. The 1.5- and 1.0-MHz nozzles, each consisting of 3 Fourier horns in resonance, measured 1.20 cm × 0.15 cm × .11 cm and 1.79 cm × 0.21 cm × 0.11 cm, respectively, required electrical drive power as low as 0.25 W and could accommodate flow rates as high as 350 ;C;l/min. As the liquid issues from the nozzle tip that vibrates longitudinally at the nozzle resonance frequency, a liquid film is maintained on the end face of the nozzle tip and standing capillary waves are formed on the free surface of the liquid film when the tip vibration amplitude exceeds a critical value due to Faraday instability. Temporal instability of the standing capillary waves, treated in terms of the unstable solutions (namely, time-dependant function with a positive Floquet exponent) to the corresponding Mathieu differential equation, is shown to be the underlying mechanism for atomization and production of such monodisperse droplets. The experimental results of nozzle resonance and atomization frequencies, droplet diameter, and critical vibration amplitude are all in excellent agreement with the predictions of the 3-D finite element simulation and the theory of Faraday instability responsible for atomization.
机译:分别使用基于1.5 MHz和1.0 MHz的微机电系统(MEMS)的硅喷嘴在超声雾化中产生了直径为单分散的乙醇液滴2.4; C; m和水滴4.5; C; m。 1.5和1.0 MHz的喷嘴,每个由3个共振傅立叶角组成,分别测得1.20 cm×0.15 cm×0.11 cm和1.79 cm×0.21 cm×0.11 cm,需要较低的电气驱动功率为0.25 W,可适应高达350; C; l / min的流速。当液体从喷嘴尖端发出并以喷嘴共振频率纵向振动时,在喷嘴尖端的振动幅度超过10%时,在喷嘴尖端的端面上会保留液膜,并且在液膜的自由表面上会形成毛细波。由于法拉第不稳定而产生的临界值。对于相应的Mathieu微分方程,用不稳定解(即具有正Floquet指数的时变函数)处理的驻毛细血管波的时间不稳定性,是造成这种单分散液滴雾化和产生的基本机理。喷嘴共振和雾化频率,液滴直径和临界振动幅度的实验结果与3-D有限元模拟的预测以及负责雾化的法拉第不稳定性理论都非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号