首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >A survey of fuzzy clustering algorithms for pattern recognition. I
【24h】

A survey of fuzzy clustering algorithms for pattern recognition. I

机译:模式识别的模糊聚类算法综述。一世

获取原文
获取原文并翻译 | 示例

摘要

Clustering algorithms aim at modeling fuzzy (i.e., ambiguous) unlabeled patterns efficiently. Our goal is to propose a theoretical framework where the expressive power of clustering systems can be compared on the basis of a meaningful set of common functional features. Part I of this paper reviews the following issues related to clustering approaches found in the literature: relative (probabilistic) and absolute (possibilistic) fuzzy membership functions and their relationships to the Bayes rule, batch and on-line learning, prototype editing schemes, growing and pruning networks, modular network architectures, topologically perfect mapping, ecological nets and neuro-fuzziness. From this discussion an equivalence between the concepts of fuzzy clustering and soft competitive learning in clustering algorithms is proposed as a unifying framework in the comparison of clustering systems. Moreover, a set of functional attributes is selected for use as dictionary entries in the comparison of clustering algorithms, which is the subject of part II of this paper.
机译:聚类算法旨在有效地对模糊(即模棱两可)的未标记模式进行建模。我们的目标是提出一个理论框架,在该框架下可以基于有意义的一组常用功能来比较集群系统的表达能力。本文的第一部分回顾了与文献中发现的聚类方法相关的以下问题:相对(概率)和绝对(可能性)模糊隶属函数及其与贝叶斯规则,批处理和在线学习,原型编辑方案,增长的关系修剪网络,模块化网络架构,拓扑完美的映射,生态网络和神经模糊性。通过这次讨论,提出了模糊聚类概念与聚类算法中的软竞争学习之间的等价关系,作为聚类系统比较中的统一框架。此外,在聚类算法的比较中,选择了一组功能属性用作字典条目,这是本文第二部分的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号