首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Function approximation based on fuzzy rules extracted frompartitioned numerical data
【24h】

Function approximation based on fuzzy rules extracted frompartitioned numerical data

机译:基于从分割数值数据中提取的模糊规则的函数逼近

获取原文
获取原文并翻译 | 示例

摘要

We present an efficient method for extracting fuzzy rules directlynfrom numerical input-output data for function approximation problems.nFirst, we convert a given function approximation problem into a patternnclassification problem. This is done by dividing the universe ofndiscourse of the output variable into multiple intervals, each regardednas a class, and then by assigning a class to each of the training datanaccording to the desired value of the output variable. Next, wenpartition the data of each class in the input space to achieve a highernaccuracy in approximation of class regions. Partition terminatesnaccording to a given criterion to prevent excessive partition. For classnregion approximation, we discuss two different types of representationsnusing hyperboxes and ellipsoidal regions, respectively. Based on anselected representation, we then extract fuzzy rules from thenapproximated class regions. For a given input datum, we convert, or innother words, defuzzify, the resulting vector of the class membershipndegrees into a single real value. This value represents the final resultnapproximated by the method. We test the presented method on a syntheticnnonlinear function approximation problem and a real-world problem in annapplication to a water purification plant. We also compare the presentednmethod with a method based on neural networks
机译:我们提出了一种从函数输入近似值直接从数值输入输出数据中提取模糊规则的有效方法。n首先,将给定的函数逼近问题转换为模式分类问题。这是通过将输出变量的话语空间划分为多个区间来完成的,每个区间都视为一个类别,然后根据输出变量的期望值为每个训练数据分配一个类别。接下来,在输入空间中对每个类的数据进行分区,以在类区域的逼近中获得更高的精度。分区根据给定条件终止,以防止过度分区。对于classnregion近似,我们分别讨论使用超框和椭球形区域的两种不同类型的表示形式。基于选定的表示,然后从近似的类区域中提取模糊规则。对于给定的输入数据,我们将类成员关系度的结果向量转换为一个或多个词,即对它们进行去模糊处理。该值表示该方法近似的最终结果。我们对合成非线性函数逼近问题和实际问题进行了测试,并将其应用于净水厂。我们还将提出的方法与基于神经网络的方法进行比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号