首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >A connectionist approach to generating oblique decision trees
【24h】

A connectionist approach to generating oblique decision trees

机译:生成倾斜决策树的连接方法

获取原文
获取原文并翻译 | 示例

摘要

Neural networks and decision tree methods are two common approaches to pattern classification. While neural networks can achieve high predictive accuracy rates, the decision boundaries they form are highly nonlinear and generally difficult to comprehend. Decision trees, on the other hand, can be readily translated into a set of rules. In this paper, we present a novel algorithm for generating oblique decision trees that capitalizes on the strength of both approaches. Oblique decision trees classify the patterns by testing on linear combinations of the input attributes. As a result, an oblique decision tree is usually much smaller than the univariate tree generated for the same domain. Our algorithm consists of two components: connectionist and symbolic. A three-layer feedforward neural network is constructed and pruned, a decision tree is then built from the hidden unit activation values of the pruned network. An oblique decision tree is obtained by expressing the activation values using the original input attributes. We test our algorithm on a wide range of problems. The oblique decision trees generated by the algorithm preserve the high accuracy of the neural networks, while keeping the explicitness of decision trees. Moreover, they outperform univariate decision trees generated by the symbolic approach and oblique decision trees built by other approaches in accuracy and tree size.
机译:神经网络和决策树方法是模式分类的两种常见方法。虽然神经网络可以实现较高的预测准确率,但它们形成的决策边界是高度非线性的,并且通常难以理解。另一方面,决策树可以很容易地转化为一组规则。在本文中,我们提出了一种利用两种方法的优势来生成倾斜决策树的新颖算法。倾斜决策树通过测试输入属性的线性组合来对模式进行分类。结果,倾斜决策树通常比为相同域生成的单变量树小得多。我们的算法由两个部分组成:连接和符号。构造并修剪三层前馈神经网络,然后根据修剪后网络的隐藏单元激活值构建决策树。通过使用原始输入属性表示激活值,可以获得倾斜决策树。我们针对各种问题测试算法。该算法生成的倾斜决策树在保持决策树明确性的同时,保持了神经网络的高精度。而且,它们在准确性和树大小方面优于由符号方法生成的单变量决策树和由其他方法构建的倾斜决策树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号