首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B >Lane detection by orientation and length discrimination
【24h】

Lane detection by orientation and length discrimination

机译:通过方向和长度区分来检测车道

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a novel lane detection algorithm for visual traffic surveillance applications under the auspice of intelligent transportation systems. Traditional lane detection methods for vehicle navigation typically use spatial masks to isolate instantaneous lane information from on-vehicle camera images. When surveillance is concerned, complete lane and multiple lane information is essential for tracking vehicles and monitoring lane change frequency from overhead cameras, where traditional methods become inadequate. The algorithm presented in this paper extracts complete multiple lane information by utilizing prominent orientation and length features of lane markings and curb structures to discriminate against other minor features. Essentially, edges are first extracted from the background of a traffic sequence, then thinned and approximated by straight lines. From the resulting set of straight lines, orientation and length discriminations are carried out three-dimensionally with the aid of two-dimensional (2-D) to three-dimensional (3-D) coordinate transformation and K-means clustering. By doing so, edges with strong orientation and length affinity are retained and clustered, while short and isolated edges are eliminated. Overall, the merits of this algorithm are as follows. First, it works well under practical visual surveillance conditions. Second, using K-means for clustering offers a robust approach. Third, the algorithm is efficient as it only requires one image frame to determine the road center lines. Fourth, it computes multiple lane information simultaneously. Fifth, the center lines determined are accurate enough for the intended application.
机译:本文介绍了一种在智能交通系统主持下的可视交通监控应用的新型车道检测算法。用于车辆导航的传统车道检测方法通常使用空间遮罩来将瞬时车道信息与车载摄像机图像隔离。当需要进行监视时,完整的车道和多车道信息对于跟踪车辆和从高架摄像机监控车道变换频率非常重要,而传统方法则不足。本文提出的算法通过利用车道标记和路缘结构的突出方向和长度特征来区分其他次要特征,从而提取出完整的多车道信息。本质上,首先从交通序列的背景中提取边缘,然后通过直线细化和近似。从所得的一组直线中,借助二维(2-D)到三维(3-D)坐标转换和K-means聚类,在三维上进行方向和长度判别。通过这样做,保留了具有强方向性和长度亲和力的边缘并使其聚集,同时消除了短而孤立的边缘。总的来说,该算法的优点如下。首先,它在实际的视觉监视条件下效果很好。其次,使用K均值进行聚类提供了一种可靠的方法。第三,该算法是高效的,因为它只需要一个图像帧即可确定道路中心线。第四,它可以同时计算多个车道信息。第五,确定的中心线对于预期的应用足够准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号