首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C >Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
【24h】

Bias and variance of validation methods for function approximation neural networks under conditions of sparse data

机译:稀疏数据条件下函数逼近神经网络验证方法的偏差和方差

获取原文
获取原文并翻译 | 示例

摘要

Neural networks must be constructed and validated with strong empirical dependence, which is difficult under conditions of sparse data. The paper examines the most common methods of neural network validation along with several general validation methods from the statistical resampling literature, as applied to function approximation networks with small sample sizes. It is shown that an increase in computation, necessary for the statistical resampling methods, produces networks that perform better than those constructed in the traditional manner. The statistical resampling methods also result in lower variance of validation, however some of the methods are biased in estimating network error.
机译:必须以强烈的经验依赖性来构建和验证神经网络,这在数据稀疏的情况下很难实现。本文研究了神经网络验证的最常用方法,以及统计重采样文献中的几种通用验证方法,这些方法适用于小样本量的函数逼近网络。结果表明,统计重采样方法所需的计算量的增加使网络的性能比传统方式构造的网络更好。统计重采样方法还可以降低验证的方差,但是某些方法在估计网络错误方面存在偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号