首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Learning-based resource optimization in asynchronous transfer mode (ATM) networks
【24h】

Learning-based resource optimization in asynchronous transfer mode (ATM) networks

机译:异步传输模式(ATM)网络中基于学习的资源优化

获取原文
获取原文并翻译 | 示例

摘要

This paper tackles the issue of bandwidth allocation in asynchronous transfer mode (ATM) networks using recently developed tools of computational intelligence. The efficient bandwidth allocation technique implies effective resources utilization of the network. The fluid flow model has been used effectively among other conventional techniques to estimate the bandwidth for a set of connections. However, such methods have been proven to be inefficient at times in coping with varying and conflicting bandwidth requirements of the different services in ATM networks. This inefficiency is due to the computational complexity of the model. To overcome this difficulty, many approximation-based solutions, such as the fluid flow approximation technique, were introduced. Although such solutions are simple, in terms of computational complexity, they nevertheless suffer from potential inaccuracies in estimating the required bandwidth. Soft computing-based bandwidth controllers, such as neural networks- and neurofuzzy-based controllers, have been shown to effectively solve an indeterminate nonlinear input-output (I-O) relations by learning from examples. Applying these techniques to the bandwidth allocation problem in ATM network yields a flexible control mechanism that offers a fundamental tradeoff for the accuracy-simplicity dilemma.
机译:本文使用最近开发的计算智能工具解决了异步传输模式(ATM)网络中的带宽分配问题。有效的带宽分配技术意味着网络的有效资源利用。在其他常规技术中,已经有效地使用了流体流动模型来估计一组连接的带宽。但是,已经证明这种方法有时不能有效地应对ATM网络中不同服务的变化和冲突的带宽需求。这种低效率是由于模型的计算复杂性造成的。为了克服这一困难,引入了许多基于近似的解决方案,例如流体流量近似技术。尽管这样的解决方案很简单,但是就计算复杂度而言,它们仍然在估计所需带宽方面存在潜在的不准确性。通过示例学习,已经显示了基于软计算的带宽控制器,例如基于神经网络和基于神经模糊的控制器,可以有效地解决不确定的非线性输入输出(I-O)关系。将这些技术应用于ATM网络中的带宽分配问题可产生一种灵活的控制机制,该机制为准确性-简单性难题提供了基本的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号