首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics
【24h】

Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics

机译:利用贪婪优生遗传算法有效解决一般武器目标分配问题

获取原文
获取原文并翻译 | 示例

摘要

A general weapon-target assignment (WTA) problem is to find a proper assignment of weapons to targets with the objective of minimizing the expected damage of own-force asset. Genetic algorithms (GAs) are widely used for solving complicated optimization problems, such as WTA problems. In this paper, a novel GA with greedy eugenics is proposed. Eugenics is a process of improving the quality of offspring. The proposed algorithm is to enhance the performance of GAs by introducing a greedy reformation scheme so as to have locally optimal offspring. This algorithm is successfully applied to general WTA problems. From our simulations for those tested problems, the proposed algorithm has the best performance when compared to other existing search algorithms.
机译:一个普遍的武器目标分配(WTA)问题是为目标找到合适的武器分配,目的是最大程度地减少对自身力量资产的预期损失。遗传算法(GA)被广泛用于解决复杂的优化问题,例如WTA问题。本文提出了一种新型的贪婪优生遗传算法。优生学是提高后代质量的过程。提出的算法是通过引入贪婪的重整方案来提高遗传算法的性能,从而具有局部最优的后代。该算法已成功应用于一般的WTA问题。通过我们对这些测试问题的仿真,与其他现有搜索算法相比,该算法具有最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号