首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C >Using discretization and Bayesian inference network learning for automatic filtering profile generation
【24h】

Using discretization and Bayesian inference network learning for automatic filtering profile generation

机译:使用离散化和贝叶斯推理网络学习进行自动过滤配置文件生成

获取原文
获取原文并翻译 | 示例

摘要

We develop a new approach for text document filtering based on automatic construction of filtering profiles using Bayesian inference network learning. Bayesian inference networks, based on probability theory, offer a suitable framework to harness the uncertainty found in the nature of the filtering problem. In order to learn the networks effectively, we explore three different techniques for discretization. Good features of high predictive power are automatically obtained from the training document content. Our approach does not need to know in advance the subject or content of documents as well as the information needs expressed as topics. A series of experiments on a set of topics were conducted on two large-scale real-world document corpora. The empirical results demonstrate that our Bayesian inference network learning with advanced discretization achieves better performance over the simple naive Bayesian approach.
机译:我们开发了一种新的文本文档过滤方法,该方法基于使用贝叶斯推理网络学习的过滤配置文件的自动构建。基于概率论的贝叶斯推理网络提供了一个合适的框架,以利用在过滤问题的本质中发现的不确定性。为了有效地学习网络,我们探索了三种不同的离散化技术。从培训文档内容中自动获得具有较高预测能力的良好功能。我们的方法不需要事先知道文档的主题或内容以及表达为主题的信息需求。在两个大型的现实世界文档语料库上进行了一系列主题的一系列实验。实验结果表明,与简单的朴素贝叶斯方法相比,具有高级离散化的贝叶斯推理网络学习具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号