首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Design of a novel knowledge-based fault detection and isolation scheme
【24h】

Design of a novel knowledge-based fault detection and isolation scheme

机译:基于知识的新型故障检测与隔离方案设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a real-time fault detection and isolation (FDI) scheme for dynamical systems is developed, by integrating the signal processing technique with neural network design. Wavelet analysis is applied to capture the fault-induced transients of the measured signals in real-time, and the decomposed signals are pre-processed to extract details about a fault. A Regional Self-Organizing feature Map (R-SOM) neural network is synthesized to classify the fault types. The R-SOM neural network adopts two regions adjustment in the learning algorithm, thus it has high precision in clustering and matching, especially when the noise, disturbance and other uncertainties exist in the systems. As a result, the proposed FDI scheme is robust and accurate. The design is implemented on a stirred tank system and satisfactory online testing results are obtained.
机译:本文通过将信号处理技术与神经网络设计相结合,开发了一种用于动态系统的实时故障检测与隔离(FDI)方案。应用小波分析来实时捕获故障引起的测量信号瞬态,并对分解后的信号进行预处理以提取有关故障的详细信息。综合了区域自组织特征图(R-SOM)神经网络以对故障类型进行分类。 R-SOM神经网络在学习算法中采用了两个区域调整,因此在聚类和匹配方面具有很高的精度,尤其是当系统中存在噪声,干扰和其他不确定性时。结果,所提出的FDI方案是鲁棒且准确的。该设计在搅拌釜系统上实施,并获得满意的在线测试结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号