首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Sensor scheduling in mobile robots using incomplete information via Min-Conflict with Happiness
【24h】

Sensor scheduling in mobile robots using incomplete information via Min-Conflict with Happiness

机译:通过最小冲突与幸福使用不完整信息的移动机器人中的传感器调度

获取原文
获取原文并翻译 | 示例

摘要

This paper develops and applies a variant of the Min-Conflict algorithm to the problem of sensor allocation with incomplete information for mobile robots. A categorization of the types of contention over sensing resources is provided, as well as a taxonomy of available information for the sensor scheduling task. The Min-Conflict with Happiness (MCH) heuristic algorithm, which performs sensor scheduling for situations in which no information is known about future assignments, is then described. The primary contribution of this modification to Min-Conflict is that it permits the optimization of sensor certainty over the set of all active behaviors, thereby producing the best sensing state for the robot at any given time. Data are taken from simulation experiments and runs from a pair of Nomad200 robots using the SFX hybrid deliberative/reactive architecture. Results from these experiments demonstrate that MCH is able to satisfy more sensor assignments (up to 142%) and maintain a higher overall utility of sensing than greedy or random assignments (a 7-24% increase), even in the presence of sensor failures. In addition, MCH supports behavioral sensor fusion allocations. The practical advantages of MCH include fast, dynamic repair of broken schedules allowing it to be used on computationally constrained systems, compatibility with the dominant hybrid robot architectural style, and least-disturbance of prior assignments minimizing interruptions to reactive behaviors.
机译:本文开发了最小冲突算法的一种变体,并将其应用于移动机器人信息不完整的传感器分配问题。提供了感应资源上争用类型的分类,以及用于传感器调度任务的可用信息的分类。然后介绍了“与幸福的最小冲突”(MCH)启发式算法,该算法在不知道有关未来分配的信息的情况下执行传感器调度。此修改对“最小冲突”的主要贡献在于,它允许在所有活动行为的集合上优化传感器确定性,从而在任何给定时间为机器人生成最佳的感应状态。数据来自模拟实验,并使用SFX混合协商/反应体系结构从一对Nomad200机器人运行。这些实验的结果表明,即使在出现传感器故障的情况下,与贪婪或随机分配相比,MCH能够满足更多的传感器分配(高达142%)并保持更高的感测整体效用(增加7-24%)。此外,MCH支持行为传感器融合分配。 MCH的实际优势包括:可以快速,动态地修复计划中断的时间表,使其可以在受计算约束的系统上使用;与主流混合机器人体系结构样式的兼容性;以及对先前任务的干扰最小,从而最大程度地减少了对反应行为的干扰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号