首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >A novel iron loss reduction technique for distribution transformersbased on a combined genetic algorithm - neural network approach
【24h】

A novel iron loss reduction technique for distribution transformersbased on a combined genetic algorithm - neural network approach

机译:基于遗传算法-神经网络的配电变压器铁损降低新技术。

获取原文
获取原文并翻译 | 示例

摘要

The paper presents an effective method to reduce the iron lossesnof wound core distribution transformers based on a combined neuralnnetwork/genetic algorithm approach. The originality of the worknpresented is that it tackles the iron loss reduction problem during thentransformer production phase, while previous works concentrated on thendesign phase. More specifically, neural networks effectively usenmeasurements taken at the first stages of core construction in order tonpredict the iron losses of the assembled transformers, while geneticnalgorithms are used to improve the grouping process of the individualncores by reducing iron losses of assembled transformers. The proposednmethod has been tested on a transformer manufacturing industry. Thenresults demonstrate the feasibility and practicality of this approach.nSignificant reduction of transformer iron losses is observed inncomparison to the current practice leading to important economic savingsnfor the transformer manufacturer
机译:本文提出了一种基于神经网络/遗传算法相结合的降低绕线铁心配电变压器铁损的有效方法。所代表作品的独创性在于它解决了变压器生产阶段的铁损减少问题,而先前的工作则集中在设计阶段。更具体地说,神经网络有效地使用了在铁心构造的第一阶段进行的测量,以便预测组装好的变压器的铁损,而遗传算法被用于通过减少组装好的变压器的铁损来改善单个核的分组过程。建议的方法已在变压器制造行业进行了测试。结果证明了该方法的可行性和实用性。n与目前的实践相比,可明显减少变压器铁损,从而为变压器制造商带来了可观的经济节约。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号