首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >A high precision global prediction approach based on local prediction approaches
【24h】

A high precision global prediction approach based on local prediction approaches

机译:基于局部预测方法的高精度全局预测方法

获取原文
获取原文并翻译 | 示例

摘要

Traditional model-free prediction approaches, such as neural networks or fuzzy models use all training data without preference in building their prediction models. Alternately, one may make predictions based only on a set of the most recent data without using other data. Usually, such local prediction schemes may have better performance in predicting time series than global prediction schemes do. However, local prediction schemes only use the most recent information and ignore information bearing on far away data. As a result, the accuracy of local prediction schemes may be limited. In this paper a novel prediction approach, termed the Markov-Fourier gray model (MFGM), is proposed. The approach builds a gray model from a set of the most recent data and a Fourier series is used to fit the residuals produced by this gray model. Then, the Markov matrices are employed to encode possible global information generated also by the residuals. It is evident that MFGM can provide the best performance among existing prediction schemes. Besides, we also implemented a short-term MFGM approach, in which the Markov matrices only recorded information for a period of time instead of all data. The predictions using MFGM again are more accurate than those using short-term MFGM. Thus, it is concluded that the global information encoded in the Markov matrices indeed can provide useful information for predictions.
机译:传统的无模型预测方法(例如神经网络或模糊模型)会使用所有训练数据,而不会优先构建其预测模型。或者,可以仅基于一组最新数据进行预测,而无需使用其他数据。通常,这种局部预测方案在预测时间序列方面可能比全局预测方案具有更好的性能。但是,局部预测方案仅使用最新信息,而忽略与遥远数据有关的信息。结果,局部预测方案的准确性可能受到限制。在本文中,提出了一种新的预测方法,称为马尔可夫-傅里叶灰色模型(MFGM)。该方法根据一组最新数据构建灰色模型,并使用傅立叶级数拟合该灰色模型产生的残差。然后,使用马尔可夫矩阵对也由残差生成的可能的全局信息进行编码。显然,MFGM可以在现有的预测方案中提供最佳性能。此外,我们还实施了短期MFGM方法,其中,马尔可夫矩阵仅记录一段时间内的信息,而不记录所有数据。再次使用MFGM的预测比使用短期MFGM的预测更准确。因此,可以得出结论,以马尔可夫矩阵编码的全局信息确实可以为预测提供有用的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号