首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Real-time VBR video traffic prediction for dynamic bandwidth allocation
【24h】

Real-time VBR video traffic prediction for dynamic bandwidth allocation

机译:实时VBR视频流量预测以实现动态带宽分配

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we systematically investigate the long-term, online, real-time variable-bit-rate (VBR) video traffic prediction, which is the key and complicated component for advanced predictive dynamic bandwidth control and allocation framework for the future networks and Internet multimedia services. We focus on neural network-based approach for traffic prediction and demonstrate that the prediction performance and robustness of neural network predictors can be significantly improved through multiresolution learning. We show that neural network traffic predictor trained through the multiresolution learning (called multiresolution learning NN traffic predictor) can successfully predict various real-world VBR video traffic up to hundreds of frames in advance, which then lays a solid foundation for predictive dynamic bandwidth control and allocation mechanism. Also, dynamic bandwidth control/allocation based on long-term traffic prediction is discussed in detail.
机译:在本文中,我们系统地研究了长期在线实时实时可变比特率(VBR)视频流量预测,这是高级预测动态带宽控制和未来网络分配框架的关键和复杂组件。互联网多媒体服务。我们专注于基于神经网络的交通预测方法,并证明通过多分辨率学习可以显着提高神经网络预测器的预测性能和鲁棒性。我们展示了通过多分辨率学习训练的神经网络流量预测器(称为多分辨率学习NN流量预测器)可以提前成功预测多达数百帧的各种现实VBR视频流量,从而为预测动态带宽控制和分配机制。另外,详细讨论了基于长期流量预测的动态带宽控制/分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号