首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >An Impatient Evolutionary Algorithm With Probabilistic Tabu Search for Unified Solution of Some NP-Hard Problems in Graph and Set Theory via Clique Finding
【24h】

An Impatient Evolutionary Algorithm With Probabilistic Tabu Search for Unified Solution of Some NP-Hard Problems in Graph and Set Theory via Clique Finding

机译:带有概率禁忌的不耐烦进化算法,用于基于图集查找的图集理论中的一些NP-Hard问题统一解

获取原文
获取原文并翻译 | 示例

摘要

Many graph- and set-theoretic problems, because of their tremendous application potential and theoretical appeal, have been well investigated by the researchers in complexity theory and were found to be NP-hard. Since the combinatorial complexity of these problems does not permit exhaustive searches for optimal solutions, only near-optimal solutions can be explored using either various problem-specific heuristic strategies or metaheuristic global-optimization methods, such as simulated annealing, genetic algorithms, etc. In this paper, we propose a unified evolutionary algorithm (EA) to the problems of maximum clique finding, maximum independent set, minimum vertex cover, subgraph and double subgraph isomorphism, set packing, set partitioning, and set cover. In the proposed approach, we first map these problems onto the maximum clique-finding problem (MCP), which is later solved using an evolutionary strategy. The proposed impatient EA with probabilistic tabu search (IEA-PTS) for the MCP integrates the best features of earlier successful approaches with a number of new heuristics that we developed to yield a performance that advances the state of the art in EAs for the exploration of the maximum cliques in a graph. Results of experimentation with the 37 DIMACS benchmark graphs and comparative analyses with six state-of-the-art algorithms, including two from the smaller EA community and four from the larger metaheuristics community, indicate that the IEA-PTS outperforms the EAs with respect to a Pareto-lexicographic ranking criterion and offers competitive performance on some graph instances when individually compared to the other heuristic algorithms. It has also successfully set a new benchmark on one graph instance. On another benchmark suite called Benchmarks with Hidden Optimal Solutions, IEA-PTS ranks second, after a very recent algorithm called COVER, among its peers that have experimented with this suite.
机译:由于其巨大的应用潜力和理论吸引力,许多图论和集合论问题已被研究人员在复杂性理论中进行了深入研究,并发现它们是NP难的。由于这些问题的组合复杂性不允许穷举搜索最优解,因此只能使用各种特定于问题的启发式策略或元启发式全局优化方法(例如模拟退火,遗传算法等)来探索接近最优的解决方案。针对最大集团发现,最大独立集,最小顶点覆盖,子图和双子图同构,集合打包,集合划分和集合覆盖等问题,本文提出了一种统一的进化算法。在提出的方法中,我们首先将这些问题映射到最大集团发现问题(MCP),然后使用进化策略解决该问题。提议的针对MCP的带有概率禁忌搜索的不耐烦的EA(IEA-PTS)将早期成功方法的最佳功能与许多新的启发式方法相结合,我们开发了这些新的启发式方法,从而提高了EA的最新技术水平,以探索图形中的最大集团。使用37个DIMACS基准图进行实验的结果以及使用六种最新算法进行的比较分析,其中包括两个来自较小EA社区的算法和四个来自较大元启发式社区的算法,这些结果表明IEA-PTS在性能方面优于EA帕累托字典顺序标准,与其他启发式算法相比,在某些图实例上具有竞争优势。它还成功地在一个图实例上设置了新的基准。在另一个称为“具有隐藏式最优解决方案的基准”的基准套件上,IEA-PTS在尝试该套件的同行中排名第二,仅次于最新的COVER算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号