首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Active Learning From Stream Data Using Optimal Weight Classifier Ensemble
【24h】

Active Learning From Stream Data Using Optimal Weight Classifier Ensemble

机译:使用最优权重分类器集成从流数据主动学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new research problem on active learning from data streams, where data volumes grow continuously, and labeling all data is considered expensive and impractical. The objective is to label a small portion of stream data from which a model is derived to predict future instances as accurately as possible. To tackle the technical challenges raised by the dynamic nature of the stream data, i.e., increasing data volumes and evolving decision concepts, we propose a classifier-ensemble-based active learning framework that selectively labels instances from data streams to build a classifier ensemble. We argue that a classifier ensemble's variance directly corresponds to its error rate, and reducing a classifier ensemble's variance is equivalent to improving its prediction accuracy. Because of this, one should label instances toward the minimization of the variance of the underlying classifier ensemble. Accordingly, we introduce a minimum-variance (MV) principle to guide the instance labeling process for data streams. In addition, we derive an optimal-weight calculation method to determine the weight values for the classifier ensemble. The MV principle and the optimal weighting module are combined to build an active learning framework for data streams. Experimental results on synthetic and real-world data demonstrate the performance of the proposed work in comparison with other approaches.
机译:在本文中,我们提出了一个关于从数据流中主动学习的新研究问题,其中数据量不断增长,并且标记所有数据被认为是昂贵且不切实际的。目的是标记流数据的一小部分,从中导出模型以尽可能准确地预测将来的实例。为了解决流数据的动态性质所带来的技术挑战,即增加数据量和发展决策概念,我们提出了一种基于分类器集成的主动学习框架,该框架选择性地标记数据流中的实例以构建分类器集成。我们认为分类器集合的方差直接与其错误率相对应,减小分类器集合的方差等同于提高其预测准确性。因此,应该将实例标记为使基础分类器集合的方差最小。因此,我们引入了最小方差(MV)原理来指导数据流的实例标记过程。另外,我们推导了一种最优权重计算方法来确定分类器集合的权重值。 MV原理和最佳加权模块相结合,为数据流建立了一个主动的学习框架。综合和真实数据的实验结果证明了与其他方法相比,拟议工作的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号