首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Studying Bio-Inspired Coalition Formation of Robots for Detecting Intrusions Using Game Theory
【24h】

Studying Bio-Inspired Coalition Formation of Robots for Detecting Intrusions Using Game Theory

机译:用博弈论研究用于检测入侵的机器人的生物启发式联盟

获取原文
获取原文并翻译 | 示例

摘要

In this paper, inspired by the society of animals, we study the coalition formation of robots for detecting intrusions using game theory. We consider coalition formation in a group of three robots that detect and capture intrusions in a closed curve loop. In our analytical model, individuals seek alliances if they think that their detect regions are too short to gain an intrusion capturing probability larger than their own. We assume that coalition seeking has an investment cost and that the formation of a coalition determines the outcomes of parities, with the detect length of a coalition simply being the sum of those of separate coalition members. We derive that, for any cost, always detecting alone is an evolutionarily stable strategy (ESS), and that, if the cost is below a threshold, always trying to form a coalition is an ESS (thus a three-way coalition arises).
机译:在本文中,受动物社会的启发,我们研究了利用博弈论检测入侵的机器人联盟。我们考虑由三个机器人组成的联盟的形成,这些机器人在闭合曲线环路中检测和捕获入侵。在我们的分析模型中,如果个人认为自己的检测区域太短而无法获得比自己更大的入侵捕获概率,则他们寻求联盟。我们假设寻求联盟具有投资成本,并且联盟的形成决定了均等的结果,而联盟的侦查长度只是各个单独联盟成员的总和。我们得出结论,对于任何成本,始终单独检测是一种进化稳定策略(ESS),并且,如果成本低于阈值,则始终试图组建联盟就是ESS(因此会形成三方联盟)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号