首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Graph-Preserving Sparse Nonnegative Matrix Factorization With Application to Facial Expression Recognition
【24h】

Graph-Preserving Sparse Nonnegative Matrix Factorization With Application to Facial Expression Recognition

机译:保图稀疏非负矩阵分解在面部表情识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel graph-preserving sparse nonnegative matrix factorization (GSNMF) algorithm is proposed for facial expression recognition. The GSNMF algorithm is derived from the original NMF algorithm by exploiting both sparse and graph-preserving properties. The latter may contain the class information of the samples. Therefore, GSNMF can be conducted as an unsupervised or a supervised dimension reduction method. A sparse representation of the facial images is obtained by minimizing the $l^{1}$-norm of the basis images. Furthermore, according to the graph embedding theory, the neighborhood of the samples is preserved by retaining the graph structure in the mapped space. The GSNMF decomposition transforms the high-dimensional facial expression images into a locality-preserving subspace with sparse representation. To guarantee convergence, we use the projected gradient method to calculate the nonnegative solution of GSNMF. Experiments are conducted on the JAFFE database and the Cohn–Kanade database with unoccluded and partially occluded facial images. The results show that the GSNMF algorithm provides better facial representations and achieves higher recognition rates than nonnegative matrix factorization. Moreover, GSNMF is also more robust to partial occlusions than other tested methods.
机译:提出了一种新颖的图保留稀疏非负矩阵分解算法(GSNMF)用于人脸表情识别。 GSNMF算法是通过利用稀疏和图保留属性从原始NMF算法派生而来的。后者可能包含样本的类别信息。因此,GSNMF可以作为无监督或有监督的降维方法进行。通过最小化基础图像的$ l ^ {1} $范数,可以获得面部图像的稀疏表示。此外,根据图嵌入理论,通过在映射空间中保留图结构来保留样本的邻域。 GSNMF分解将高维面部表情图像转换成具有稀疏表示的保留局部性的子空间。为了保证收敛,我们使用投影梯度法来计算GSNMF的非负解。实验是在JAFFE数据库和Cohn-Kanade数据库中使用未遮挡和部分遮挡的面部图像进行的。结果表明,与非负矩阵分解相比,GSNMF算法可提供更好的面部表情并获得更高的识别率。此外,与其他测试方法相比,GSNMF在部分遮挡方面也更强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号