首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >An Application of Reinforcement Learning for Efficient Spectrum Usage in Next-Generation Mobile Cellular Networks
【24h】

An Application of Reinforcement Learning for Efficient Spectrum Usage in Next-Generation Mobile Cellular Networks

机译:强化学习在下一代移动蜂窝网络中有效频谱使用的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes reinforcement learning as a foundational stone of a framework for efficient spectrum usage in the context of next-generation mobile cellular networks. The objective of the framework is to efficiently use the spectrum in a cellular orthogonal frequency-division multiple access network while unnecessary spectrum is released for secondary spectrum usage within a private commons spectrum access model. Numerical results show that the proposed framework obtains the best performance compared with other approaches for spectrum assignment. Moreover, the framework is relatively simple to implement in terms of computational requirements and signaling overhead.
机译:本文提出强化学习作为下一代移动蜂窝网络中有效频谱使用框架的基础。该框架的目标是有效地在蜂窝正交频分多址网络中使用频谱,同时释放不必要的频谱供私有公共频谱接入模型中的二次频谱使用。数值结果表明,与其他频谱分配方法相比,该框架获得了最佳性能。此外,就计算需求和信令开销而言,该框架相对容易实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号