首页> 外文期刊>Systems, Man and Cybernetics, IEEE Transactions on >Refractory effects in neural counting processes with exponentially decaying rates
【24h】

Refractory effects in neural counting processes with exponentially decaying rates

机译:速率呈指数递减的神经计数过程中的耐火效应

获取原文
获取原文并翻译 | 示例

摘要

The effect of nonparalyzable dead time on Poisson point processes with random integrated rates is studied. The case of exponentially decreasing rate, plus background (pedestal), with a uniformly uncertain starting time is explicitly presented. The decay time is considered to be slow compared to the refractory time. No constraints on the sampling time are imposed for calculating the mean and variance, though for the counting distribution, the sampling time must be short compared to the decay time. The results are expected to be useful in neurobiology, neural counting, psychophysics, photon counting, nuclear counting, and radiochemistry.
机译:研究了不可瘫死时间对具有随机综合速率的泊松点过程的影响。明确提出了一种情况,即速率呈指数下降,加上背景(基座)且启动时间始终不确定的情况。与耐火时间相比,衰减时间被认为是慢的。计算平均值和方差没有对采样时间施加任何限制,尽管对于计数分布而言,采样时间必须比衰减时间短。预期该结果可用于神经生物学,神经计数,心理物理学,光子计数,核计数和放射化学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号