首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A multilayer neural network system for computer access security
【24h】

A multilayer neural network system for computer access security

机译:用于计算机访问安全的多层神经网络系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new multilayer neural network system to identify computer users. The input vectors were made up of the time intervals between successive keystrokes created by users while typing a known sequence of characters. Each input vector was classified into one of several classes, thereby identifying the user who typed the character sequence. Three types of networks were discussed: a multilayer feedforward network trained using the backpropagation algorithm, a sum-of-products network trained with a modification of backpropagation, and a new hybrid architecture that combines the two. A maximum classification accuracy of 97.5% was achieved using a neural network based pattern classifier. Such approach can improve computer access security.
机译:本文提出了一种新的多层神经网络系统来识别计算机用户。输入向量由用户在键入已知字符序列时创建的连续击键之间的时间间隔组成。每个输入向量被分类为几种类别之一,从而识别键入字符序列的用户。讨论了三种类型的网络:使用反向传播算法训练的多层前馈网络,使用反向传播的修改方法训练的乘积和网络以及将两者结合在一起的新混合体系结构。使用基于神经网络的模式分类器,可以达到97.5%的最大分类精度。这种方法可以提高计算机访问安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号