首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Evidential reasoning approach to multisource-data classification in remote sensing
【24h】

Evidential reasoning approach to multisource-data classification in remote sensing

机译:遥感多源数据分类的证据推理方法

获取原文
获取原文并翻译 | 示例

摘要

In the evidential reasoning approach to the classification of remotely sensed multisource data, each data source is considered as providing a body of evidence with a certain degree of belief. The degrees of belief are represented by "interval-valued probabilities" rather than by conventional point-valued probabilities so that uncertainty can be embedded in the measures. The proposed method is applied to the ground-cover classification of simulated 201-band high resolution imaging spectrometer (HIRIS) data, from which a set of multiple sources is obtained by dividing the dimensionally huge data into smaller pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than conventional maximum likelihood methods.
机译:在对遥感多源数据进行分类的证据推理方法中,每个数据源都被视为提供了一定程度的可信度的证据。置信度由“区间值概率”表示,而不是由常规的点值概率表示,因此不确定性可以嵌入度量中。将该方法应用于模拟的201波段高分辨率成像光谱仪(HIRIS)数据的地表分类,基于全局统计相关信息,通过将维度巨大的数据分成较小的部分,从中获得一组多个源。通过分而合的过程,该方法比传统的最大似然方法能够利用更多的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号