首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A k-nearest neighbor classification rule based on Dempster-Shafer theory
【24h】

A k-nearest neighbor classification rule based on Dempster-Shafer theory

机译:基于Dempster-Shafer理论的k近邻分类规则

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of classifying an unseen pattern on the basis of its nearest neighbors in a recorded data set is addressed from the point of view of Dempster-Shafer theory. Each neighbor of a sample to be classified is considered as an item of evidence that supports certain hypotheses regarding the class membership of that pattern. The degree of support is defined as a function of the distance between the two vectors. The evidence of the k nearest neighbors is then pooled by means of Dempster's rule of combination. This approach provides a global treatment of such issues as ambiguity and distance rejection, and imperfect knowledge regarding the class membership of training patterns. The effectiveness of this classification scheme as compared to the voting and distance-weighted k-NN procedures is demonstrated using several sets of simulated and real-world data.
机译:在本文中,从Dempster-Shafer理论的角度出发,解决了基于已记录数据集中的最不相邻模式对不可见模式进行分类的问题。要分类的样本的每个邻居都被视为支持有关该模式的类别成员身份的某些假设的证据项。支持程度定义为两个向量之间距离的函数。然后,根据Dempster的组合规则,将k个最近邻居的证据汇总起来。这种方法为诸如歧义性和距离拒绝之类的问题提供了全局性的处理,并且对培训模式的班级成员资格的知识不完善。使用几组模拟和真实数据证明了该分类方案与投票和距离加权k-NN程序相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号