首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >MVEM-Based Fault Diagnosis of Automotive Engines Using Dempster–Shafer Theory and Multiple Hypotheses Testing
【24h】

MVEM-Based Fault Diagnosis of Automotive Engines Using Dempster–Shafer Theory and Multiple Hypotheses Testing

机译:基于MV-Shafer理论和多重假设测试的基于MVEM的汽车发动机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Internal combustion engines exhibit fast pulsating short-time dynamics due to the reciprocating cylinder motion, around mean operating points that change comparatively slow due to inputs such as throttle and load. Comparatively, simple mean value engine models (MVEM) describe the slow changes of the averaged states for automotive control and fault diagnosis. In this paper, a bank of state estimators based on MVEMs is used for fault residual generation. Three faults: 1) throttle mass air-flow sensor fau 2) exhaust gas recirculation valve sensor fau and 3) exhaust leak fault are considered here. These faults are significant as they affect emission levels. Optimized thresholds for residual classification are derived for minimizing false alarm rates and missed detection rates. The diagnosis logic, based on the principles of structured residuals proposed in literature, is extended here for multiple hypotheses testing. Furthermore, the Dempster–Shafer theory is used to associate a confidence measure with the decision conclusions and this is shown to improve isolation. Performance is demonstrated with automotive engine data obtained from a four-cylinder instantaneous spark-ignition engine (gasoline) system model, developed in the simulation software AMESim.
机译:由于气缸的往复运动,内燃机在平均工作点附近表现出快速脉动的短时动力,该平均工作点由于诸如节气门和负载的输入而相对缓慢地变化。相比之下,简单均值引擎模型(MVEM)描述了用于汽车控制和故障诊断的平均状态的缓慢变化。在本文中,将基于MVEM的状态估计器库用于故障残差生成。三个故障:1)节气门质量空气流量传感器故障; 2)排气再循环阀传感器故障; 3)这里考虑排气泄漏故障。这些故障很重要,因为它们会影响排放水平。推导了用于残差分类的优化阈值,以最大程度地降低误报率和漏检率。基于文献中提出的结构化残差原理的诊断逻辑在此扩展为多种假设检验。此外,Dempster–Shafer理论用于将置信度度量与决策结论相关联,并且可以改善隔离度。通过从在模拟软件AMESim中开发的四缸瞬时火花点火发动机(汽油)系统模型获得的汽车发动机数据来证明性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号