首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Animal-Vehicle Collision Mitigation System for Automated Vehicles
【24h】

Animal-Vehicle Collision Mitigation System for Automated Vehicles

机译:自动化车辆的动物-车辆碰撞缓解系统

获取原文
获取原文并翻译 | 示例

摘要

Detecting large animals on roadways using automated systems such as robots or vehicles is a vital task. This can be achieved using conventional tools such as ultrasonic sensors, or with innovative technology based on smart cameras. In this paper, we investigate a vision-based solution. We begin the paper by performing a comparative study between three detectors: 1) Haar-AdaBoost; 2) histogram of oriented gradient (HOG)-AdaBoost; and 3) local binary pattern (LBP)-AdaBoost, which were initially developed to detect humans and their faces. These detectors are implemented, evaluated, and compared to each other in terms of accuracy and processing time. Based on our evaluation and comparison results, we design a two-stage architecture which outperforms the aforementioned detectors. The proposed architecture detects candidate regions of interest using LBP-AdaBoost in the first stage, which offers robustness to false positives in real-time conditions. The second stage is based on support vector machine classifiers that were trained using HOG features. The training data are generated from our novel dataset called large animal dataset, which contains common and thermographic images of large road-animals. We emphasize that no such public dataset currently exists.
机译:使用机器人或车辆等自动化系统检测道路上的大型动物是一项至关重要的任务。这可以使用常规工具(例如超声传感器)或基于智能相机的创新技术来实现。在本文中,我们研究了基于视觉的解决方案。我们通过在三个探测器之间进行比较研究来开始本文:1)Haar-AdaBoost; 2)定向梯度(HOG)-AdaBoost的直方图; 3)本地二进制模式(LBP)-AdaBoost,最初被开发用于检测人类及其面部。这些检测器在准确性和处理时间方面被实现,评估和相互比较。根据我们的评估和比较结果,我们设计了一个两级架构,其性能优于上述检测器。所提出的架构在第一阶段使用LBP-AdaBoost检测感兴趣的候选区域,这在实时条件下为误报提供了鲁棒性。第二阶段基于使用HOG功能训练的支持向量机分类器。训练数据是从我们称为大型动物数据集的新颖数据集生成的,该数据集包含大型道路动物的常见图像和热成像图像。我们强调目前没有这样的公共数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号