首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Uncertainty Analysis for the Keyword System of Web Events
【24h】

Uncertainty Analysis for the Keyword System of Web Events

机译:网络事件关键词系统的不确定性分析

获取原文
获取原文并翻译 | 示例

摘要

Webpage recommendations for hot Web events can assist people to easily follow the evolution of these Web events. At the same time, there are different levels of semantic uncertainty underlying the amount of Webpages for a Web event, such as recapitulative information and detailed information. Apparently, the grasp of the semantic uncertainty of Web events could improve the satisfactoriness of Webpage recommendations. However, traditional hit-rate-based or clustering-based Webpage recommendation methods have overlooked these different levels of semantic uncertainty. In this paper, we propose a framework to identify the different underlying levels of semantic uncertainty in terms of Web events, and then utilize these for Webpage recommendations. Our idea is to consider a Web event as a system composed of different keywords, and the uncertainty of this keyword system is related to the uncertainty of the particular Web event. Based on keyword association linked network Web event representation and Shannon entropy, we identify the different levels of semantic uncertainty, and construct a semantic pyramid (SP) to express the uncertainty hierarchy of a Web event. Finally, an SP-based Webpage recommendation system is developed. Experiments show that the proposed algorithm can significantly capture the different levels of the semantic uncertainties of Web events and it can be applied to Webpage recommendations.
机译:针对热门Web事件的网页建议可以帮助人们轻松地跟踪这些Web事件的发展。同时,Web事件的网页数量存在不同级别的语义不确定性,例如概括性信息和详细信息。显然,掌握Web事件的语义不确定性可以提高Web页面推荐的满意度。但是,传统的基于命中率或基于聚类的网页推荐方法已忽略了语义不确定性的这些不同级别。在本文中,我们提出了一个框架,用于根据Web事件识别语义不确定性的不同底层级别,然后将其用于网页推荐。我们的想法是将Web事件视为由不同关键字组成的系统,而该关键字系统的不确定性与特定Web事件的不确定性有关。基于关键字关联链接网络Web事件表示和Shannon熵,我们识别了语义不确定性的不同级别,并构造了一个语义金字塔(SP)来表示Web事件的不确定性层次结构。最后,开发了一个基于SP的网页推荐系统。实验表明,该算法可以有效地捕获Web事件语义不确定性的不同层次,并可以应用于网页推荐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号