首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Conditional Joint Decision and Estimation With Application to Joint Tracking and Classification
【24h】

Conditional Joint Decision and Estimation With Application to Joint Tracking and Classification

机译:有条件的联合决策和估计及其在联合跟踪和分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

The joint decision and estimation (JDE) algorithm is for solving problems involving simultaneous interdependent decision and estimation. Based on the JDE approach with a generalized Bayes risk and its recursive implementation (RJDE) for a dynamic system proposed recently, this paper proposes a conditional JDE (CJDE) risk, which is a generalization of the Bayes decision and estimation risks conditioning on data. We derive the optimal solution that minimizes the CJDE risk and present an optimal CJDE algorithm. For dynamic JDE problems, a recursive version of CJDE (RCJDE) is also proposed by following the same spirit of CJDE. To improve the joint performance of CJDE for a dynamic system, we propose a modified CJDE (MJDE) risk, by incorporating on-line prediction information, and present a corresponding MJDE algorithm. Because parameters play important roles in the JDE and CJDE risks, we analyze their effect to provide guidance for practical applications. The power of the proposed CJDE approach is illustrated by applying it to the joint target tracking and classification problem, which has received a great deal of attention in recent years. Simulation results show that CJDE can beat the traditional two-stage strategies and it involves less computation than RJDE. Furthermore, the superiority of MJDE is verified by comparing it with RCJDE. Moreover, it is shown that with appropriate parameters, CJDE can outperform separate optimal decision and optimal estimation in the joint performance metric.
机译:联合决策和估计(JDE)算法用于解决涉及同时相互依赖的决策和估计的问题。基于最近提出的具有广义贝叶斯风险的JDE方法及其动态系统的递归实现(RJDE),本文提出了条件JDE(CJDE)风险,它是对数据的贝叶斯决策和估计风险条件的概括。我们得出了最小化CJDE风险的最佳解决方案,并提出了一种最佳CJDE算法。对于动态JDE问题,还遵循CJDE的相同精神提出了CJDE的递归版本(RCJDE)。为了提高动态系统的CJDE联合性能,我们通过结合在线预测信息提出了一种改进的CJDE(MJDE)风险,并提出了相应的MJDE算法。由于参数在JDE和CJDE风险中起着重要的作用,因此我们分析它们的影响为实际应用提供指导。通过将其应用于联合目标跟踪和分类问题,可以说明所提出的CJDE方法的强大功能,近年来该方法受到了广泛的关注。仿真结果表明,CJDE可以击败传统的两阶段策略,并且比RJDE所需的计算量更少。此外,通过与RCJDE进行比较,验证了MJDE的优越性。此外,结果表明,通过适当的参数,CJDE可以在联合绩效度量中胜过单独的最优决策和最优估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号