首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Measuring Uncertainty of Probabilistic Rough Set Model From Its Three Regions
【24h】

Measuring Uncertainty of Probabilistic Rough Set Model From Its Three Regions

机译:从三个区域测量概率粗糙集模型的不确定性

获取原文
获取原文并翻译 | 示例

摘要

The probabilistic rough set model is a generalized rough set model, which was proposed to improve the fault tolerance ability of the classical Pawlak's rough set model. Compared with the classical Pawlak's rough set model, the probabilistic rough set model and its several special forms (such as variable precision rough set model, Bayesian rough set model, and decision-theoretic rough set model) divide a domain into three regions by two parameters (α, β), and the objects belong to every region with a certain uncertainty. With the increase of information (attributes), the boundary region of the probabilistic rough set model may become smaller, bigger, or remain unchanged. This paper aims first to study some more complex uncertainty of the probabilistic rough set model. Then the uncertainty of the three regions is defined and analyzed. Besides, the changing regularities of uncertainty of a target concept in the probabilistic rough set model are discovered. Finally, three kinds of incremental information are defined, and their judging theorems are proposed. These results could enrich and improve rough set theory to deal with uncertain information systems.
机译:概率粗糙集模型是广义粗糙集模型,旨在提高经典Pawlak粗糙集模型的容错能力。与经典的Pawlak粗糙集模型相比,概率粗糙集模型及其几种特殊形式(如可变精度粗糙集模型,贝叶斯粗糙集模型和决策理论粗糙集模型)通过两个参数将一个域分为三个区域(α,β),并且对象具有一定不确定性地属于每个区域。随着信息(属性)的增加,概率粗糙集模型的边界区域可能会变得更小,更大或保持不变。本文旨在首先研究概率粗糙集模型的一些更复杂的不确定性。然后定义并分析了这三个区域的不确定性。此外,还发现了概率粗糙集模型中目标概念不确定性的变化规律。最后,定义了三种增量信息,并提出了它们的判断定理。这些结果可以丰富和改进粗糙集理论以处理不确定的信息系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号