首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Using Large-Scale Social Media Networks as a Scalable Sensing System for Modeling Real-Time Energy Utilization Patterns
【24h】

Using Large-Scale Social Media Networks as a Scalable Sensing System for Modeling Real-Time Energy Utilization Patterns

机译:使用大型社交媒体网络作为可扩展的传感系统,对实时能源利用模式进行建模

获取原文
获取原文并翻译 | 示例

摘要

The hypothesis of this paper is that topics, expressed through large-scale social media networks, approximate electricity utilization events (e.g., using high power consumption devices such as a dryer) with high accuracy. Traditionally, researchers have proposed the use of smart meters to model device-specific electricity utilization patterns. However, these techniques suffer from scalability and cost challenges. To mitigate these challenges, we propose a social media network-driven model that utilizes large-scale textual and geospatial data to approximate electricity utilization patterns, without the need for physical hardware systems (e.g., such as smart meters), hereby providing a readily scalable source of data. The methodology is validated by considering the problem of electricity use disaggregation, where energy consumption rates from a nine-month period in San Diego, coupled with 1.8 million tweets from the same location and time span, are utilized to automatically determine activities that require large or small amounts of electricity to accomplish. The system determines 200 topics on which to detect electricity-related events and finds 38 of these to be valid descriptors of energy utilization. In addition, a comparison with electricity consumption patterns published by domain experts in the energy sector shows that our methodology both reproduces the topics reported by experts, while discovering additional topics. Finally, the generalizability of our model is compared with a weather-based model, provided by the U.S. Department of Energy.
机译:本文的假设是,通过大型社交媒体网络表达的主题可以高精度地近似估算用电事件(例如,使用高功耗设备(如烘干机))。传统上,研究人员建议使用智能电表来建模特定于设备的用电模式。然而,这些技术遭受可伸缩性和成本挑战。为了缓解这些挑战,我们提出了一种社交媒体网络驱动的模型,该模型利用大规模文本和地理空间数据来近似用电量模式,而无需物理硬件系统(例如智能电表),从而提供了易于扩展的功能数据源。该方法通过考虑用电分类问题得到了验证,其中圣地亚哥使用了9个月的能源消耗率,再加上来自相同位置和时间跨度的180万条推文,可以自动确定需要大量或大量使用的活动。少量的电力就可以完成。该系统确定200个主题以检测与电力相关的事件,并找到其中38个主题是能源利用的有效描述符。此外,与能源领域专家发布的用电模式进行的比较表明,我们的方法既重现了专家报告的主题,又发现了其他主题。最后,我们将模型的可推广性与美国能源部提供的基于天气的模型进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号