首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >A Novel Fusion Approach Based on the Global Consistency Criterion to Fusing Multiple Segmentations
【24h】

A Novel Fusion Approach Based on the Global Consistency Criterion to Fusing Multiple Segmentations

机译:一种基于全局一致性准则的融合多分割的融合方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a new fusion model whose objective is to fuse multiple region-based segmentation maps to get a final better segmentation result. The suggested new fusion model is based on an energy function originated from the global consistency error (GCE), a perceptual measure which takes into account the inherent multiscale nature of an image segmentation by measuring the level of refinement existing between two spatial partitions. Combined with a region merging/splitting prior, this new energy-based fusion model of label fields allows to define an interesting penalized likelihood estimation procedure based on the GCE criterion with which the fusion of basic, rapidly-computed segmentation results appears as a relevant alternative compared with other (possibly complex) segmentation techniques proposed in the image segmentation field. The performance of our fusion model was evaluated on the Berkeley dataset including various segmentations given by humans (manual ground truth segmentations). The obtained results clearly demonstrate the efficiency of this fusion model.
机译:在本文中,我们介绍了一种新的融合模型,其目的是融合多个基于区域的分割图以获得最终更好的分割结果。建议的新融合模型基于源自全局一致性误差(GCE)的能量函数,该感知性度量是通过测量两个空间分区之间存在的细化级别考虑图像分割的固有多尺度性质的。结合区域合并/分割先验,此基于标签域的基于能量的新融合模型允许基于GCE准则定义有趣的惩罚似然估计程序,基本快速计算的分割结果的融合似乎可以作为一种相关的选择与在图像分割领域中提出的其他(可能是复杂的)分割技术相比。我们在伯克利数据集上评估了我们融合模型的性能,该数据集包括人类给出的各种分割(手动地面真相分割)。获得的结果清楚地证明了该融合模型的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号