首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Automating the Configuration of MapReduce: A Reinforcement Learning Scheme
【24h】

Automating the Configuration of MapReduce: A Reinforcement Learning Scheme

机译:自动化MapReduce的配置:加强学习方案

获取原文
获取原文并翻译 | 示例

摘要

With the exponential growth of data and the high demand for the analysis of large datasets, the MapReduce framework has been widely utilized to process data in a timely, cost-effective manner. It is well-known that the performance of MapReduce is limited by its default configuration parameters, and there are a few research studies that have focused on finding the optimal configurations to improve the performance of the MapReduce framework. Recently, machine learning based approaches have been receiving more attention to be utilized to auto configure the MapReduce parameters to account for the dynamic nature of the applications. In this article, we propose and develop a reinforcement learning (RL)-based scheme, named RL-MRCONF, to automatically configure the MapReduce parameters. Specifically, we explore and experiment with two variations of RL-MRCONF; one variation is based on the traditional RL algorithm and the second is based on the deep RL algorithm. Results obtained from simulations show that the RL-MRCONF has the ability to successfully and effectively auto-configure the MapReduce parameters dynamically according to changes in job types and computing resources. Moreover, simulation results show our proposed RL-MRCONF scheme outperforms the traditional RL-based implementation. Using datasets provided by MR-Perf, simulation results show that our proposed scheme provides around 50% performance improvement in terms of execution time when compared with MapReduce using default settings.
机译:随着数据的指数增长和对大型数据集的分析的高需求,MapReduce框架已被广泛用于处理数据及时,经济有效的方式。众所周知,MapReduce的性能受到其默认配置参数的限制,并且有一些研究研究专注于找到最佳配置以提高MapReduce框架的性能。最近,基于机器学习的方法已经接受了更多地关注,用于自动配置MapReduce参数以解释应用程序的动态性质。在本文中,我们提出并开发了一个名为RL-MRCONF的加强学习(RL)方案,以自动配置MapReduce参数。具体而言,我们探索并试验RL-MRCONF的两个变体;一种变型基于传统的RL算法,第二个变型基于深度RL算法。从仿真获得的结果表明,RL-MRCONF能够根据作业类型和计算资源的变化来成功和有效地自动配置MapReduce参数。此外,仿真结果表明我们所提出的RL-MRCONF方案优于传统的基于RL的实施。使用MR-Perf提供的数据集,仿真结果表明,与使用默认设置相比,我们的提出方案在执行时间内提供约50%的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号