首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >BciNet: A Biased Contest-Based Crowdsourcing Incentive Mechanism Through Exploiting Social Networks
【24h】

BciNet: A Biased Contest-Based Crowdsourcing Incentive Mechanism Through Exploiting Social Networks

机译:BCINET:通过利用社交网络,一种基于偏见的竞赛众包激励机制

获取原文
获取原文并翻译 | 示例

摘要

Crowdsourcing has proved to be a splendid tool to aggregate the knowledge from a pool of individuals in order to perform abundant microtasks efficiently. Recently, with the explosive growth of online social network, Word of Mouth (WoM)-based crowdsourcing systems have emerged, in which besides conducting the tasks by themselves, participants simultaneously recruit other individuals through exploiting their social networks to help solve crowdsourced tasks. This crowdsourcing paradigm can greatly facilitate to grow the pool of crowdworkers. However, there exist two conflicting challenges in designing an effective WoM-based incentive mechanism: 1) sybil attack and 2) heterogeneous effect of participants. That is, intuitively, incentivizing (usually compensating for) common-ability individuals will inevitably stimulate the behavior of sybil attack (i.e., some individuals create multiple sybils, and split the total efforts into those sybils to expect more compensation). This paper proposes a novel biased contest-based crowdsourcing incentive mechanism through exploiting social networks (BciNet), aiming to balance those two conflicting objectives. BciNet is composed of two phases. First, based on spreading activation model, an enhanced geometric virtual point dissemination mechanism is able to provide sybil-proof property and accommodate the realistic social network structure. Second, based on participants' virtual points, a biased contest gives more reward to less able participants. Through carefully calibrating the bias factor, simulation results based on the real dataset show that BciNet can greatly improve the amount of participants' effort levels, and actually be robust against the sybil attack. In brief, for a practical incentive mechanism, the methodology to address conflicting goals is to put rational individuals into dilemma: to be sybil or not to be, it is the problem, i.e., the potential gain from the sybils in the second phase may be offset by the loss in the first phase.
机译:被证明是众包是一个辉煌的工具,可以从个人池中汇总知识,以便有效地执行丰富的微功能。最近,随着在线社交网络的爆炸性增长,出现了口碑(WOW)基于众包系统,除了通过自己进行任务,除了开展任务之外,参与者通过利用他们的社交网络来帮助解决众群任务而同时招聘其他人。这种众包的范式可以极大地有助于种植人群池。然而,在设计有效的WOM的激励机制方面存在两种相互矛盾的挑战:1)Sybil攻击和2)参与者的异质效果。即直觉,激励(通常是补偿)普通能力的个体将不可避免地刺激Sybil攻击的行为(即,一些人创建多个Sybils,并将总努力分成那些有Sybils预期更多补偿的努力)。本文提出了一种新颖的偏见基于竞赛的众包激励机制,通过利用社交网络(BCINET),旨在平衡这两个冲突的目标。 BCINET由两个阶段组成。首先,基于扩展激活模型,增强的几何虚拟点传播机制能够提供Sybil-Proop属性并容纳现实的社交网络结构。其次,基于参与者的虚拟点,偏见的竞赛给予更少能力的参与者提供更多奖励。通过仔细校准偏置因素,基于真实数据集的仿真结果表明,BCINET可以大大提高参与者的努力水平,并且实际上对来自Sybil攻击的努力。简而言之,为了解决矛盾的目标的方法,方法是将理性个体陷入困境:是SYBIL或者不是,这是问题,即第二阶段中有SYBILS的潜在增益偏移第一阶段的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号