首页> 外文期刊>Systems, Man and Cybernetics, IEEE Transactions on >Toward Hand-Dominated Activity Recognition Systems With Wristband-Interaction Behavior Analysis
【24h】

Toward Hand-Dominated Activity Recognition Systems With Wristband-Interaction Behavior Analysis

机译:对具有腕带交互行为分析的手工主导的活动识别系统

获取原文
获取原文并翻译 | 示例

摘要

The increasing usage of wearable devices for ambulatory monitoring and pervasive computing systems has given rise to the need of convenient and efficient activity recognition techniques. Hand-dominated activity recognition has great potential in understanding users' gesture and providing context-aware computing services. This paper investigates the feasibility and applicability on the usage of wristband-interaction behavior for recognizing hand-dominated activities, with the advantage of great compliance and long wearing time. For each action, sensor data from wristband are analyzed to obtain kinematic sequences. The sequences are then depicted by statistics-, frequency-, and wavelet-domain features for providing accurate and fine-grained characterization of hand-dominated actions, and the correlation between the wristband-sensor features and the actions is analyzed. Classification techniques (Naive Bayes, nearest neighbor, neural network, support vector machine, and Random Forest) are applied to the feature space for performing hand-dominated activity recognition. Analyses are conducted using the data from 51 participants with a diversity in gender, age, weight, and height. Extensive experiments demonstrate the efficacy of the proposed approach, achieving a recognition rate of 97.29% and an F-score above 0.94. Additional experiments on the effect of feature selection and wristband sampling rate are provided to further examine the effectiveness of our approach. Our data are publicly available.
机译:对于动态监测和普遍计算系统的可穿戴设备的使用增加引起了方便高效的活动识别技术。手绘活动识别在了解用户的手势和提供上下文知识的计算服务方面具有很大的潜力。本文调查了对腕带互动行为使用的可行性和适用性,以识别手工主导的活动,具有良好的合规性和长时间的优势。对于每个动作,分析来自腕带的传感器数据以获得运动序列。然后通过统计,频率 - 和小波域特征来描绘该序列,用于提供准确和细粒度的手指占据动作的表征,并且分析了腕带传感器特征与动作之间的相关性。分类技术(天真贝叶斯,最近邻居,神经网络,支持向量机和随机林)应用于特征空间以执行手工主导的活动识别。使用51名参与者的数据进行分析,具有性别,年龄,体重和身高的多样性。广泛的实验证明了所提出的方法的功效,实现97.29%的识别率和0.94的F分。提供了关于特征选择和腕带采样率效果的额外实验,以进一步检查我们方法的有效性。我们的数据是公开的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号