首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >An I-frame Methodology for Approximating Nonlinear Least Squares
【24h】

An I-frame Methodology for Approximating Nonlinear Least Squares

机译:一种近似非线性最小二乘法的I帧方法

获取原文
获取原文并翻译 | 示例

摘要

The classic approach for estimating parameters of a model using historical data is to solve a nonlinear least squares optimization problem using numerical methods. We develop an I-frame methodology to solve the nonlinear least squares problem quickly which can be applied to both offline and online (where data is streamed in real time) parameter estimation. Using the concept of I-frames from imaging and animation, we approximate a solution to the nonlinear least squares problem via a two-step process, an I-frame optimization, and an incremental optimization. The I-frame optimization solves for the parameters using a subset of data points and the incremental optimization adjusts the parameters in between the I-frames. We show that the criterion of generating I-frames can affect the average squared error of the final solution. Our methodology benefits from being scalable as the number of parameters and amount of data increases with an appropriate I-frame generation criterion.
机译:使用历史数据估计模型参数的经典方法是使用数值方法解决非线性最小二乘优化问题。我们开发了一种I-Frame方法来解决非线性最小二乘问题,可以快速应用于离线和在线(其中数据在实时流式传输)参数估计。使用i帧的概念从成像和动画,我们通过两步处理,I帧优化和增量优化来近似对非线性最小二乘问题的解决方案。 I-Frame优化使用数据点子集和增量优化的参数解决了参数,调整I帧之间的参数。我们表明生成I帧的标准可能会影响最终解决方案的平均平均误差。我们的方法效益可扩展,随着参数的数量和数据量随适当的I帧生成标准而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号