首页> 外文期刊>IEEE Transactions on Sustainable Computing >Energy-Aware Processor Merging Algorithms for Deadline Constrained Parallel Applications in Heterogeneous Cloud Computing
【24h】

Energy-Aware Processor Merging Algorithms for Deadline Constrained Parallel Applications in Heterogeneous Cloud Computing

机译:异构云计算中的时间受限并行应用的能量感知处理器合并算法

获取原文
获取原文并翻译 | 示例

摘要

Energy efficiency has become a key issue for cloud computing platforms and data centers. Minimizing the total energy consumption of an application is one of the most important concerns of cloud providers, and satisfying the deadline constraint of an application is one of the most important quality of service requirements. Previous methods tried to turn off as many processors as possible by integrating tasks on fewer processors to minimize the energy consumption of a deadline constrained parallel application in a heterogeneous cloud computing system. However, our analysis revealed that turning off as many processors as possible does not necessarily lead to the minimization of total energy consumption. In this study, we propose an energy-aware processor merging (EPM) algorithm to select the most effective processor to turn off from the energy saving perspective, and a quick EPM (QEPM) algorithm to reduce the computation complexity of EPM. Experimental results on real and randomly generated parallel applications validate that the proposed EPM and QEPM algorithms can reduce more energy than existing methods at different scales, parallelism, and heterogeneity degrees.
机译:能源效率已成为云计算平台和数据中心的关键问题。最小化应用程序的总能耗是云提供商最关注的问题之一,而满足应用程序的期限约束则是最重要的服务质量要求之一。先前的方法试图通过将任务集成到较少的处理器上来关闭尽可能多的处理器,以最大程度地减少异构云计算系统中受期限限制的并行应用程序的能耗。但是,我们的分析表明,关闭尽可能多的处理器并不一定会导致总能耗的最小化。在这项研究中,我们提出了一种节能处理器合并(EPM)算法以从节能角度选择最有效的处理器,并提出一种快速EPM(QEPM)算法来减少EPM的计算复杂性。在真实和随机生成的并行应用程序上的实验结果证明,与现有方法相比,在不同的规模,并行度和异构度下,所提出的EPM和QEPM算法可以减少更多的能量。

著录项

  • 来源
    《IEEE Transactions on Sustainable Computing》 |2017年第2期|62-75|共14页
  • 作者单位

    College of Computer Science and Electronic Engineering, Hunan University, Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan, China;

    Graduate School of Engineering, Nagoya University, Aichi, Japan;

    College of Computer Science and Electronic Engineering, Hunan University, Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan, China;

    College of Computer Science and Electronic Engineering, Hunan University, Key Laboratory for Embedded and Network Computing of Hunan Province, Hunan, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Energy consumption; Heuristic algorithms; Cloud computing; Turning; Dynamic scheduling; Schedules;

    机译:能耗;启发式算法;云计算;车削;动态调度;调度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号