首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >A best-first language processing model integrating the unification grammar and Markov language model for speech recognition applications
【24h】

A best-first language processing model integrating the unification grammar and Markov language model for speech recognition applications

机译:结合了统一语法和马尔可夫语言模型的最佳第一语言处理模型,用于语音识别应用

获取原文
获取原文并翻译 | 示例

摘要

A language processing model is proposed in which the grammatical approach of unification grammar and the statistical approach of Markov language models are properly integrated in a word lattice chart parsing algorithm with different best-first parsing strategies. This model has been successfully implemented in experiments on Mandarin speech recognition although it is language-independent. Test results show that significant improvements in both correct rate of recognition and computation speed can be achieved. A correct rate of 93.8% and 5 s per sentence on an IBM PC/AT, as compared with 73.8% and 25 s using unification grammar alone and 82.2% and 3 s using a Markov language model alone, was achieved. This high performance is due to the effective rejection of noisy word hypothesis interferences; that is, the unification-based grammatical analysis eliminates all illegal combinations, while the Markovian probabilities of constituents combined with the considerations on constituent length indicate the correct direction of processing.
机译:提出了一种语言处理模型,该模型将统一语法的语法方法和马尔可夫语言模型的统计方法适当地集成在具有不同最佳优先解析策略的词格图解析算法中。尽管该模型与语言无关,但已在普通话语音识别实验中成功实现。测试结果表明,可以在正确识别率和计算速度上实现显着提高。与仅使用统一语法的73.8%和25 s,仅使用马尔可夫语言模型的82.2%和3 s相比,在IBM PC / AT上的正确率是每句93.8%和5 s。如此高的性能归因于对噪声单词假设干扰的有效拒绝;也就是说,基于统一的语法分析消除了所有非法组合,而成分的马尔可夫概率与对成分长度的考虑相结合则表明了正确的处理方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号