首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Estimation of noise-corrupted speech DFT-spectrum using the pitch period
【24h】

Estimation of noise-corrupted speech DFT-spectrum using the pitch period

机译:使用基音周期估计受噪声破坏的语音DFT频谱

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a method for utilizing the quasi-periodicity of speech in a minimum mean-square error (MMSE) estimation of the discrete Fourier transform (DFT) log-amplitude, either for speech enhancement or for noise-robust speech recognition. The estimator takes into account the periodicity by conditioning the estimate of voiced speech on the distance between the frequency of any given DFT coefficient and the nearest harmonic: if the DFT coefficient lies in the vicinity of a harmonic, the a priori probability distribution (PD) of its amplitude centers around higher values than if it lies halfway between two harmonics. Thus, knowing the pitch narrows down the a priori PD, improving the estimate. The DFT estimator is combined with a mixture model for the broadband spectral PD, so that correlations between distant frequencies are partially taken into account. The algorithm has been tested with computer-room noise using an MSE criterion for the spectral envelope, defined by Mel-scale filter-bank log energies, and in recognition experiments. The incorporation of correlations in the broadband spectrum improves recognition accuracy significantly; the periodicity conditioning reduces the MSE for voiced speech, but recognition accuracy is not improved because the overwhelming majority of errors occur in unvoiced speech.
机译:本文介绍了一种在离散傅里叶变换(DFT)对数幅度的最小均方误差(MMSE)估计中利用语音的准周期性的方法,可用于语音增强或用于噪声鲁棒的语音识别。估计器通过根据任何给定DFT系数的频率和最接近的谐波之间的距离来调节语音语音的估计,从而考虑到周期性:如果DFT系数位于谐波附近,则先验概率分布(PD)其幅度的中心值要高于两个谐波之间的中间值。因此,知道音高会缩小先验PD,从而改善估计。 DFT估计器与宽带频谱PD的混合模型结合在一起,因此可以部分考虑远距离之间的相关性。该算法已在计算机机房噪声中进行了测试,使用了MSE频谱包络标准,该频谱包络由梅尔级滤波器组对数能量定义,并用于识别实验中。将相关性纳入宽带频谱可显着提高识别精度;周期性条件降低了有声语音的MSE,但是由于绝大多数错误发生在无声语音中,因此无法提高识别准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号