首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >Blind single channel deconvolution using nonstationary signal processing
【24h】

Blind single channel deconvolution using nonstationary signal processing

机译:使用非平稳信号处理的盲单通道反卷积

获取原文
获取原文并翻译 | 示例

摘要

Blind deconvolution is fundamental in signal processing applications and, in particular, the single channel case remains a challenging and formidable problem. This paper considers single channel blind deconvolution in the case where the degraded observed signal may be modeled as the convolution of a nonstationary source signal with a stationary distortion operator. The important feature that the source is nonstationary while the channel is stationary facilitates the unambiguous identification of either the source or channel, and deconvolution is possible, whereas if the source and channel are both stationary, identification is ambiguous. The parameters for the channel are estimated by modeling the source as a time-varyng AR process and the distortion by an all-pole filter, and using the Bayesian framework for parameter estimation. This estimate can then be used to deconvolve the observed signal. In contrast to the classical histogram approach for estimating the channel poles, where the technique merely relies on the fact that the channel is actually stationary rather than modeling it as so, the proposed Bayesian method does take account for the channel's stationarity in the model and, consequently, is more robust. The properties of this model are investigated, and the advantage of utilizing the nonstationarity of a system rather than considering it as a curse is discussed.
机译:盲反卷积在信号处理应用中至关重要,特别是在单通道情况下,仍然是一个具有挑战性和艰巨性的问题。本文考虑了单通道盲解卷积,在这种情况下,退化的观测信号可以建模为非平稳源信号与平稳失真算符的卷积。源在通道静止时是不稳定的这一重要特征有助于对源或通道进行明确的标识,并且可以进行反卷积,而如果源和通道都是静止的,则标识是不确定的。通过将源建模为随时间变化的AR过程并通过全极点滤波器对失真进行建模,并使用贝叶斯框架进行参数估计,可以估算出通道的参数。然后可以将该估计值用于对所观察到的信号进行反卷积。与估算通道极点的经典直方图方法相比,该技术仅依赖于通道实际上是固定的事实而不是对其进行建模,因此,提出的贝叶斯方法确实考虑了通道在模型中的平稳性,并且因此,更加健壮。研究了该模型的性质,并讨论了利用系统的非平稳性而不是将其视为诅咒的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号