首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >A Blind Channel Identification-Based Two-Stage Approach to Separation and Dereverberation of Speech Signals in a Reverberant Environment
【24h】

A Blind Channel Identification-Based Two-Stage Approach to Separation and Dereverberation of Speech Signals in a Reverberant Environment

机译:基于盲通道识别的两阶段混响环境中语音信号分离与去混响方法

获取原文
获取原文并翻译 | 示例

摘要

Blind separation of independent speech sources from their convolutive mixtures in a reverberant acoustic environment is a difficult problem and the state-of-the-art blind source separation techniques are still unsatisfactory. The challenge lies in the coexistence of spatial interference from competing sources and temporal echoes due to room reverberation in the observed mixtures. Focusing only on optimizing the signal-to-interference ratio is inadequate for most if not all speech processing systems. In this paper, we deduce that spatial interference and temporal echoes can be separated and an$Mtimes N$MIMO system will be converted into$M$SIMO systems that are free of spatial interference. Furthermore we show that the channel matrices of these SIMO systems are irreducible if the channels from the same source in the MIMO system do not share common zeros. Thereafter we can apply the Bezout theorem to remove reverberation in those SIMO systems. Such a two-stage procedure leads to a novel sequential source separation and speech dereverberation algorithm based on blind multichannel identification. Simulations with measurements obtained in the varechoic chamber at Bell Labs demonstrate the success and robustness of the proposed algorithm in highly reverberant acoustic environments.
机译:在混响声环境中,将独立语音源与其卷积混合物进行盲分离是一个困难的问题,并且最新的盲源分离技术仍然不能令人满意。挑战在于,由于观察到的混合物中存在室内混响,竞争性源的空间干扰与时间回声并存。对于大多数甚至不是全部的语音处理系统,仅关注于优化信噪比是不够的。在本文中,我们推论可以将空间干扰和时间回波分开,并将一个$ Mtimes N $ MIMO系统转换为没有空间干扰的$ M $ SIMO系统。此外,我们表明,如果MIMO系统中来自同一源的信道不共享公共零,则这些SIMO系统的信道矩阵是不可约的。此后,我们可以应用Bezout定理来消除那些SIMO系统中的混响。这样的两阶段过程导致了基于盲多通道识别的新颖的顺序源分离和语音去混响算法。在Bell Labs的Varechoic室中获得的测量结果的仿真证明了该算法在高混响声环境中的成功性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号