首页> 外文期刊>IEEE Transactions on Speech and Audio Proceessing >Robust Endpoint Detection Algorithm Based on the Adaptive Band-Partitioning Spectral Entropy in Adverse Environments
【24h】

Robust Endpoint Detection Algorithm Based on the Adaptive Band-Partitioning Spectral Entropy in Adverse Environments

机译:逆境中基于自适应频带划分谱熵的鲁棒端点检测算法

获取原文
获取原文并翻译 | 示例

摘要

In speech processing, endpoint detection in noisy environments is difficult, especially in the presence of nonstationary noise. Robust endpoint detection is one of the most important areas of speech processing. Generally, the feature parameters used for endpoint detection are highly sensitive to the environment. Endpoint detection is severely degraded at low signal-to-noise ratios (SNRs) since those feature parameters cannot adequately describe the characteristics of a speech signal. As a result, this study seeks the banded structure on speech spectrogram to distinguish a speech from a nonspeech, especially in adverse environments. First, this study proposes a feature parameter, called band-partitioning spectral entropy (BSE), which exploits the use of the banded structure on speech spectrogram. A refined adaptive band selection (RABS) method is extended from the adaptive band selection method proposed by Wu , which adaptively selects useful bands not corrupted by noise. The successful RABS method is strongly depended on an on-line detection with minimal processing delay. In this paper, the RABS method is combined with the BSE parameter. Finally, a novel robust feature parameter, adaptive band-partitioning spectral entropy (ABSE), is presented to successfully detect endpoints in adverse environments. Experimental results indicate that the ABSE parameter is very effective under various noise conditions with several SNRs. Furthermore, the proposed algorithm outperforms other approaches and is reliable in a real car.
机译:在语音处理中,在嘈杂环境中进行端点检测非常困难,尤其是在存在非平稳噪声的情况下。强大的端点检测是语音处理的最重要领域之一。通常,用于端点检测的特征参数对环境高度敏感。由于那些特征参数不能充分描述语音信号的特性,因此在低信噪比(SNR)时,端点检测会严重退化。因此,本研究寻求语音频谱图上的带状结构,以区分语音与非语音,尤其是在不利的环境中。首先,这项研究提出了一个特征参数,称为频带划分频谱熵(BSE),该参数利用了语音频谱图上的带状结构。改进的自适应频带选择(RABS)方法是Wu提出的自适应频带选择方法的扩展,该方法自适应地选择不受噪声破坏的有用频带。成功的RABS方法在很大程度上依赖于在线检测且处理延迟最小。本文将RABS方法与BSE参数结合使用。最后,提出了一种新颖的鲁棒特征参数,自适应频带划分谱熵(ABSE),可以成功检测不利环境中的端点。实验结果表明,ABSE参数在具有多个SNR的各种噪声条件下非常有效。此外,所提出的算法优于其他方法,并且在实际汽车中是可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号